attempted to remove dependency on (old) Fv and (old) Parser; lifting still uses Fv.thy; the examples do not work at the moment (with equivp proofs failing)
authorChristian Urban <urbanc@in.tum.de>
Sun, 02 May 2010 14:06:26 +0100
changeset 2008 1bddffddc03f
parent 2007 7ee9a2fefc77
child 2009 4f7d7cbd4bc8
attempted to remove dependency on (old) Fv and (old) Parser; lifting still uses Fv.thy; the examples do not work at the moment (with equivp proofs failing)
Nominal/Attic/Fv.thy
Nominal/Attic/Parser.thy
Nominal/Equivp.thy
Nominal/Ex/Classical.thy
Nominal/Fv.thy
Nominal/Lift.thy
Nominal/NewParser.thy
Nominal/Parser.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Attic/Fv.thy	Sun May 02 14:06:26 2010 +0100
@@ -0,0 +1,653 @@
+theory Fv
+imports "../Nominal-General/Nominal2_Atoms" 
+        "Abs" "Perm" "Rsp" "Nominal2_FSet"
+begin
+
+(* The bindings data structure:
+
+  Bindings are a list of lists of lists of triples.
+
+   The first list represents the datatypes defined.
+   The second list represents the constructors.
+   The internal list is a list of all the bndings that
+   concern the constructor.
+
+   Every triple consists of a function, the binding and
+   the body.
+
+  Eg:
+nominal_datatype
+
+   C1
+ | C2 x y z bind x in z
+ | C3 x y z bind f x in z bind g y in z
+
+yields:
+[
+ [],
+ [(NONE, 0, 2)],
+ [(SOME (Const f), 0, 2), (Some (Const g), 1, 2)]]
+
+A SOME binding has to have a function which takes an appropriate
+argument and returns an atom set. A NONE binding has to be on an
+argument that is an atom or an atom set.
+*)
+
+(*
+An overview of the generation of free variables:
+
+1) fv_bn functions are generated only for the non-recursive binds.
+
+   An fv_bn for a constructor is a union of values for the arguments:
+
+   For an argument x that is in the bn function
+   - if it is a recursive argument bn' we return: fv_bn' x
+   - otherwise empty
+
+   For an argument x that is not in the bn function
+   - for atom we return: {atom x}
+   - for atom set we return: atom ` x
+   - for a recursive call to type ty' we return: fv_ty' x
+     with fv of the appropriate type
+   - otherwise empty
+
+2) fv_ty functions generated for all types being defined:
+
+   fv_ty for a constructor is a union of values for the arguments.
+
+   For an argument that is bound in a shallow binding we return empty.
+
+   For an argument x that bound in a non-recursive deep binding
+   we return: fv_bn x.
+
+   Otherwise we return the free variables of the argument minus the
+   bound variables of the argument.
+
+   The free variables for an argument x are:
+   - for an atom: {atom x}
+   - for atom set: atom ` x
+   - for recursive call to type ty' return: fv_ty' x
+   - for nominal datatype ty' return: fv_ty' x
+
+   The bound variables are a union of results of all bindings that
+   involve the given argument. For a paricular binding:
+
+   - for a binding function bn: bn x
+   - for a recursive argument of type ty': fv_fy' x
+   - for nominal datatype ty' return: fv_ty' x
+*)
+
+(*
+An overview of the generation of alpha-equivalence:
+
+1) alpha_bn relations are generated for binding functions.
+
+   An alpha_bn for a constructor is true if a conjunction of
+   propositions for each argument holds.
+
+   For an argument a proposition is build as follows from
+   th:
+
+   - for a recursive argument in the bn function, we return: alpha_bn argl argr
+   - for a recursive argument for type ty not in bn, we return: alpha_ty argl argr
+   - for other arguments in the bn function we return: True
+   - for other arguments not in the bn function we return: argl = argr
+
+2) alpha_ty relations are generated for all the types being defined:
+
+   For each constructor we gather all the arguments that are bound,
+   and for each of those we add a permutation. We associate those
+   permutations with the bindings. Note that two bindings can have
+   the same permutation if the arguments being bound are the same.
+
+   An alpha_ty for a constructor is true if there exist permutations
+   as above such that a conjunction of propositions for all arguments holds.
+
+   For an argument we allow bindings where only one of the following
+   holds:
+
+   - Argument is bound in some shallow bindings: We return true
+   - Argument of type ty is bound recursively in some other
+     arguments [i1, .. in] with one binding function bn.
+     We return:
+
+     (bn argl, (argl, argl_i1, ..., argl_in)) \<approx>gen
+     \<lambda>(argl,argl1,..,argln) (argr,argr1,..,argrn). 
+         (alpha_ty argl argr) \<and> (alpha_i1 argl1 argr1) \<and> .. \<and> (alpha_in argln argrn)
+     \<lambda>(arg,arg1,..,argn). (fv_ty arg) \<union> (fv_i1 arg1) \<union> .. \<union> (fv_in argn)
+     pi
+     (bn argr, (argr, argr_i1, ..., argr_in))
+
+   - Argument is bound in some deep non-recursive bindings.
+     We return: alpha_bn argl argr
+   - Argument of type ty has some shallow bindings [b1..bn] and/or
+     non-recursive bindings [f1 a1, .., fm am], where the bindings
+     have the permutations p1..pl. We return:
+
+     (b1l \<union>..\<union> bnl \<union> f1 a1l \<union>..\<union> fn anl, argl) \<approx>gen
+     alpha_ty fv_ty (p1 +..+ pl)
+     (b1r \<union>..\<union> bnr \<union> f1 a1r \<union>..\<union> fn anr, argr)
+
+   - Argument has some recursive bindings. The bindings were
+     already treated in 2nd case so we return: True
+   - Argument has no bindings and is not bound.
+     If it is recursive for type ty, we return: alpha_ty argl argr
+     Otherwise we return: argl = argr
+
+*)
+
+
+ML {*
+datatype alpha_mode = AlphaGen | AlphaRes | AlphaLst;
+*}
+
+ML {*
+fun atyp_const AlphaGen = @{const_name alpha_gen}
+  | atyp_const AlphaRes = @{const_name alpha_res}
+  | atyp_const AlphaLst = @{const_name alpha_lst}
+*}
+
+(* TODO: make sure that parser checks that bindings are compatible *)
+ML {*
+fun alpha_const_for_binds [] = atyp_const AlphaGen
+  | alpha_const_for_binds ((NONE, _, _, at) :: t) = atyp_const at
+  | alpha_const_for_binds ((SOME (_, _), _, _, at) :: _) = atyp_const at
+*}
+
+ML {*
+fun is_atom thy typ =
+  Sign.of_sort thy (typ, @{sort at})
+
+fun is_atom_set thy (Type ("fun", [t, @{typ bool}])) = is_atom thy t
+  | is_atom_set _ _ = false;
+
+fun is_atom_fset thy (Type ("FSet.fset", [t])) = is_atom thy t
+  | is_atom_fset _ _ = false;
+*}
+
+
+(* Like map2, only if the second list is empty passes empty lists insted of error *)
+ML {*
+fun map2i _ [] [] = []
+  | map2i f (x :: xs) (y :: ys) = f x y :: map2i f xs ys
+  | map2i f (x :: xs) [] = f x [] :: map2i f xs []
+  | map2i _ _ _ = raise UnequalLengths;
+*}
+
+(* Finds bindings with the same function and binding, and gathers all
+   bodys for such pairs
+ *)
+ML {*
+fun gather_binds binds =
+let
+  fun gather_binds_cons binds =
+    let
+      val common = map (fn (f, bi, _, aty) => (f, bi, aty)) binds
+      val nodups = distinct (op =) common
+      fun find_bodys (sf, sbi, sty) =
+        filter (fn (f, bi, _, aty) => f = sf andalso bi = sbi andalso aty = sty) binds
+      val bodys = map ((map (fn (_, _, bo, _) => bo)) o find_bodys) nodups
+    in
+      nodups ~~ bodys
+    end
+in
+  map (map gather_binds_cons) binds
+end
+*}
+
+ML {*
+fun un_gather_binds_cons binds =
+  flat (map (fn (((f, bi, aty), bos), pi) => map (fn bo => ((f, bi, bo, aty), pi)) bos) binds)
+*}
+
+ML {*
+  open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *);
+*}
+ML {*
+  (* TODO: It is the same as one in 'nominal_atoms' *)
+  fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom});
+  val noatoms = @{term "{} :: atom set"};
+  fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x];
+  fun mk_union sets =
+    fold (fn a => fn b =>
+      if a = noatoms then b else
+      if b = noatoms then a else
+      if a = b then a else
+      HOLogic.mk_binop @{const_name sup} (a, b)) (rev sets) noatoms;
+  val mk_inter = foldr1 (HOLogic.mk_binop @{const_name inf})
+  fun mk_diff a b =
+    if b = noatoms then a else
+    if b = a then noatoms else
+    HOLogic.mk_binop @{const_name minus} (a, b);
+  fun mk_atom_set t =
+    let
+      val ty = fastype_of t;
+      val atom_ty = HOLogic.dest_setT ty --> @{typ atom};
+      val img_ty = atom_ty --> ty --> @{typ "atom set"};
+    in
+      (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t)
+    end;
+  fun mk_atom_fset t =
+    let
+      val ty = fastype_of t;
+      val atom_ty = dest_fsetT ty --> @{typ atom};
+      val fmap_ty = atom_ty --> ty --> @{typ "atom fset"};
+      val fset_to_set = @{term "fset_to_set :: atom fset \<Rightarrow> atom set"}
+    in
+      fset_to_set $ ((Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t))
+    end;
+  (* Similar to one in USyntax *)
+  fun mk_pair (fst, snd) =
+    let val ty1 = fastype_of fst
+      val ty2 = fastype_of snd
+      val c = HOLogic.pair_const ty1 ty2
+    in c $ fst $ snd
+    end;
+*}
+
+(* Given [fv1, fv2, fv3] creates %(x, y, z). fv1 x u fv2 y u fv3 z *)
+ML {*
+fun mk_compound_fv fvs =
+let
+  val nos = (length fvs - 1) downto 0;
+  val fvs_applied = map (fn (fv, no) => fv $ Bound no) (fvs ~~ nos);
+  val fvs_union = mk_union fvs_applied;
+  val (tyh :: tys) = rev (map (domain_type o fastype_of) fvs);
+  fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
+in
+  fold fold_fun tys (Abs ("", tyh, fvs_union))
+end;
+*}
+
+(* Given [R1, R2, R3] creates %(x,x'). %(y,y'). %(z,z'). R x x' \<and> R y y' \<and> R z z' *)
+ML {*
+fun mk_compound_alpha Rs =
+let
+  val nos = (length Rs - 1) downto 0;
+  val nos2 = (2 * length Rs - 1) downto length Rs;
+  val Rs_applied = map (fn (R, (no2, no)) => R $ Bound no2 $ Bound no) (Rs ~~ (nos2 ~~ nos));
+  val Rs_conj = mk_conjl Rs_applied;
+  val (tyh :: tys) = rev (map (domain_type o fastype_of) Rs);
+  fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
+  val abs_rhs = fold fold_fun tys (Abs ("", tyh, Rs_conj))
+in
+  fold fold_fun tys (Abs ("", tyh, abs_rhs))
+end;
+*}
+
+
+ML {*
+fun non_rec_binds l =
+let
+  fun is_non_rec (SOME (f, false), _, _, _) = SOME f
+    | is_non_rec _ = NONE
+in
+  distinct (op =) (map_filter is_non_rec (flat (flat l)))
+end
+*}
+
+(* We assume no bindings in the type on which bn is defined *)
+ML {*
+fun fv_bn thy (dt_info : Datatype_Aux.info) fv_frees bn_fvbn (fvbn, (bn, ith_dtyp, args_in_bns)) =
+let
+  val {descr, sorts, ...} = dt_info;
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+  fun fv_bn_constr (cname, dts) args_in_bn =
+  let
+    val Ts = map (typ_of_dtyp descr sorts) dts;
+    val names = Datatype_Prop.make_tnames Ts;
+    val args = map Free (names ~~ Ts);
+    val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
+    fun fv_arg ((dt, x), arg_no) =
+      let
+        val ty = fastype_of x
+(*        val _ = tracing ("B 1" ^ PolyML.makestring args_in_bn);*)
+(*        val _ = tracing ("B 2" ^ PolyML.makestring bn_fvbn);*)
+      in
+        case AList.lookup (op=) args_in_bn arg_no of
+          SOME NONE => @{term "{} :: atom set"}
+        | SOME (SOME (f : term)) => (the (AList.lookup (op=) bn_fvbn f)) $ x
+        | NONE =>
+            if is_atom thy ty then mk_single_atom x else
+            if is_atom_set thy ty then mk_atom_set x else
+            if is_atom_fset thy ty then mk_atom_fset x else
+            if is_rec_type dt then nth fv_frees (body_index dt) $ x else
+            @{term "{} :: atom set"}
+      end;
+    val arg_nos = 0 upto (length dts - 1)
+  in
+    HOLogic.mk_Trueprop (HOLogic.mk_eq
+      (fvbn $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ arg_nos))))
+  end;
+  val (_, (_, _, constrs)) = nth descr ith_dtyp;
+  val eqs = map2i fv_bn_constr constrs args_in_bns
+in
+  ((bn, fvbn), eqs)
+end
+*}
+
+ML {* print_depth 100 *}
+ML {*
+fun fv_bns thy dt_info fv_frees rel_bns =
+let
+  fun mk_fvbn_free (bn, ith, _) =
+    let
+      val fvbn_name = "fv_" ^ (Long_Name.base_name (fst (dest_Const bn)));
+    in
+      (fvbn_name, Free (fvbn_name, fastype_of (nth fv_frees ith)))
+    end;
+  val (fvbn_names, fvbn_frees) = split_list (map mk_fvbn_free rel_bns);
+  val bn_fvbn = (map (fn (bn, _, _) => bn) rel_bns) ~~ fvbn_frees
+  val (l1, l2) = split_list (map (fv_bn thy dt_info fv_frees bn_fvbn) (fvbn_frees ~~ rel_bns));
+in
+  (l1, (fvbn_names ~~ l2))
+end
+*}
+
+
+ML {*
+fun alpha_bn (dt_info : Datatype_Aux.info) alpha_frees bn_alphabn ((bn, ith_dtyp, args_in_bns), (alpha_bn_free, _ (*is_rec*) )) =
+let
+  val {descr, sorts, ...} = dt_info;
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+  fun alpha_bn_constr (cname, dts) args_in_bn =
+  let
+    val Ts = map (typ_of_dtyp descr sorts) dts;
+    val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
+    val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts);
+    val args = map Free (names ~~ Ts);
+    val args2 = map Free (names2 ~~ Ts);
+    val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
+    val rhs = HOLogic.mk_Trueprop
+      (alpha_bn_free $ (list_comb (c, args)) $ (list_comb (c, args2)));
+    fun lhs_arg ((dt, arg_no), (arg, arg2)) =
+      case AList.lookup (op=) args_in_bn arg_no of
+        SOME NONE => @{term True}
+      | SOME (SOME f) => (the (AList.lookup (op=) bn_alphabn f)) $ arg $ arg2
+      | NONE =>
+          if is_rec_type dt then (nth alpha_frees (body_index dt)) $ arg $ arg2
+          else HOLogic.mk_eq (arg, arg2)
+    val arg_nos = 0 upto (length dts - 1)
+    val lhss = mk_conjl (map lhs_arg (dts ~~ arg_nos ~~ (args ~~ args2)))
+    val eq = Logic.mk_implies (HOLogic.mk_Trueprop lhss, rhs)
+  in
+    eq
+  end
+  val (_, (_, _, constrs)) = nth descr ith_dtyp;
+  val eqs = map2i alpha_bn_constr constrs args_in_bns
+in
+  ((bn, alpha_bn_free), eqs)
+end
+*}
+
+ML {*
+fun alpha_bns dt_info alpha_frees rel_bns bns_rec =
+let
+  val {descr, sorts, ...} = dt_info;
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+  fun mk_alphabn_free (bn, ith, _) =
+    let
+      val alphabn_name = "alpha_" ^ (Long_Name.base_name (fst (dest_Const bn)));
+      val alphabn_type = nth_dtyp ith --> nth_dtyp ith --> @{typ bool};
+      val alphabn_free = Free(alphabn_name, alphabn_type);
+    in
+      (alphabn_name, alphabn_free)
+    end;
+  val (alphabn_names, alphabn_frees) = split_list (map mk_alphabn_free rel_bns);
+  val bn_alphabn = (map (fn (bn, _, _) => bn) rel_bns) ~~ alphabn_frees;
+  val pair = split_list (map (alpha_bn dt_info alpha_frees bn_alphabn)
+    (rel_bns ~~ (alphabn_frees ~~ bns_rec)))
+in
+  (alphabn_names, pair)
+end
+*}
+
+
+(* Checks that a list of bindings contains only compatible ones *)
+ML {*
+fun bns_same l =
+  length (distinct (op =) (map (fn ((b, _, _, atyp), _) => (b, atyp)) l)) = 1
+*}
+
+ML {*
+fun setify x =
+  if fastype_of x = @{typ "atom list"} then
+  Const (@{const_name set}, @{typ "atom list \<Rightarrow> atom set"}) $ x else x
+*}
+
+ML {*
+fun define_fv (dt_info : Datatype_Aux.info) bindsall bns lthy =
+let
+  val thy = ProofContext.theory_of lthy;
+  val {descr, sorts, ...} = dt_info;
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+  val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
+    "fv_" ^ name_of_typ (nth_dtyp i)) descr);
+  val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr;
+  val fv_frees = map Free (fv_names ~~ fv_types);
+(* TODO: We need a transitive closure, but instead we do this hack considering
+   all binding functions as recursive or not *)
+  val nr_bns =
+    if (non_rec_binds bindsall) = [] then []
+    else map (fn (bn, _, _) => bn) bns;
+  val rel_bns = filter (fn (bn, _, _) => bn mem nr_bns) bns;
+  val (bn_fv_bns, fv_bn_names_eqs) = fv_bns thy dt_info fv_frees rel_bns;
+  val fvbns = map snd bn_fv_bns;
+  val (fv_bn_names, fv_bn_eqs) = split_list fv_bn_names_eqs;
+
+  fun fv_constr ith_dtyp (cname, dts) bindcs =
+    let
+      val Ts = map (typ_of_dtyp descr sorts) dts;
+      val bindslen = length bindcs
+      val pi_strs_same = replicate bindslen "pi"
+      val pi_strs = Name.variant_list [] pi_strs_same;
+      val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
+      val bind_pis_gath = bindcs ~~ pis;
+      val bind_pis = un_gather_binds_cons bind_pis_gath;
+      val bindcs = map fst bind_pis;
+      val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
+      val args = map Free (names ~~ Ts);
+      val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
+      val fv_c = nth fv_frees ith_dtyp;
+      val arg_nos = 0 upto (length dts - 1)
+      fun fv_bind args (NONE, i, _, _) =
+            if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
+            if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
+            if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
+            if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
+            (* TODO goes the code for preiously defined nominal datatypes *)
+            @{term "{} :: atom set"}
+        | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
+      fun fv_binds_as_set args relevant = mk_union (map (setify o fv_bind args) relevant)
+      fun find_nonrec_binder j (SOME (f, false), i, _, _) = if i = j then SOME f else NONE
+        | find_nonrec_binder _ _ = NONE
+      fun fv_arg ((dt, x), arg_no) =
+        case get_first (find_nonrec_binder arg_no) bindcs of
+          SOME f =>
+            (case get_first (fn (x, y) => if x = f then SOME y else NONE) bn_fv_bns of
+                SOME fv_bn => fv_bn $ x
+              | NONE => error "bn specified in a non-rec binding but not in bn list")
+        | NONE =>
+            let
+              val arg =
+                if is_rec_type dt then nth fv_frees (body_index dt) $ x else
+                if ((is_atom thy) o fastype_of) x then mk_single_atom x else
+                if ((is_atom_set thy) o fastype_of) x then mk_atom_set x else
+                if ((is_atom_fset thy) o fastype_of) x then mk_atom_fset x else
+                (* TODO goes the code for preiously defined nominal datatypes *)
+                @{term "{} :: atom set"};
+              (* If i = j then we generate it only once *)
+              val relevant = filter (fn (_, i, j, _) => ((i = arg_no) orelse (j = arg_no))) bindcs;
+              val sub = fv_binds_as_set args relevant
+            in
+              mk_diff arg sub
+            end;
+      val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq
+        (fv_c $ list_comb (c, args), mk_union (map fv_arg  (dts ~~ args ~~ arg_nos))))
+    in
+      fv_eq
+    end;
+  fun fv_eq (i, (_, _, constrs)) binds = map2i (fv_constr i) constrs binds;
+  val fveqs = map2i fv_eq descr (gather_binds bindsall)
+  val fv_eqs_perfv = fveqs
+  val rel_bns_nos = map (fn (_, i, _) => i) rel_bns;
+  fun filter_fun (_, b) = b mem rel_bns_nos;
+  val all_fvs = (fv_names ~~ fv_eqs_perfv) ~~ (0 upto (length fv_names - 1))
+  val (fv_names_fst, fv_eqs_fst) = apsnd flat (split_list (map fst (filter_out filter_fun all_fvs)))
+  val (fv_names_snd, fv_eqs_snd) = apsnd flat (split_list (map fst (filter filter_fun all_fvs)))
+  val fv_eqs_all = fv_eqs_fst @ (flat fv_bn_eqs);
+  val fv_names_all = fv_names_fst @ fv_bn_names;
+  val add_binds = map (fn x => (Attrib.empty_binding, x))
+(* Function_Fun.add_fun Function_Common.default_config ... true *)
+  val (fvs, lthy') = (Primrec.add_primrec
+    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_all) (add_binds fv_eqs_all) lthy)
+  val (fvs2, lthy'') =
+    if fv_eqs_snd = [] then (([], []), lthy') else
+   (Primrec.add_primrec
+    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_snd) (add_binds fv_eqs_snd) lthy')
+  val ordered_fvs = fv_frees @ fvbns;
+  val all_fvs = (fst fvs @ fst fvs2, snd fvs @ snd fvs2)
+in
+  ((all_fvs, ordered_fvs), lthy'')
+end
+*}
+
+ML {*
+fun define_alpha (dt_info : Datatype_Aux.info) bindsall bns fv_frees lthy =
+let
+  val thy = ProofContext.theory_of lthy;
+  val {descr, sorts, ...} = dt_info;
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+(* TODO: We need a transitive closure, but instead we do this hack considering
+   all binding functions as recursive or not *)
+  val nr_bns =
+    if (non_rec_binds bindsall) = [] then []
+    else map (fn (bn, _, _) => bn) bns;
+  val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
+    "alpha_" ^ name_of_typ (nth_dtyp i)) descr);
+  val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr;
+  val alpha_frees = map Free (alpha_names ~~ alpha_types);
+  (* We assume that a bn is either recursive or not *)
+  val bns_rec = map (fn (bn, _, _) => not (bn mem nr_bns)) bns;
+  val (alpha_bn_names, (bn_alpha_bns, alpha_bn_eqs)) =
+    alpha_bns dt_info alpha_frees bns bns_rec
+  val alpha_bn_frees = map snd bn_alpha_bns;
+  val alpha_bn_types = map fastype_of alpha_bn_frees;
+
+  fun alpha_constr ith_dtyp (cname, dts) bindcs =
+    let
+      val Ts = map (typ_of_dtyp descr sorts) dts;
+      val bindslen = length bindcs
+      val pi_strs_same = replicate bindslen "pi"
+      val pi_strs = Name.variant_list [] pi_strs_same;
+      val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
+      val bind_pis_gath = bindcs ~~ pis;
+      val bind_pis = un_gather_binds_cons bind_pis_gath;
+      val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
+      val args = map Free (names ~~ Ts);
+      val names2 = Name.variant_list (pi_strs @ names) (Datatype_Prop.make_tnames Ts);
+      val args2 = map Free (names2 ~~ Ts);
+      val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
+      val alpha = nth alpha_frees ith_dtyp;
+      val arg_nos = 0 upto (length dts - 1)
+      fun fv_bind args (NONE, i, _, _) =
+            if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
+            if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
+            if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
+            if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
+            (* TODO goes the code for preiously defined nominal datatypes *)
+            @{term "{} :: atom set"}
+        | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
+      fun fv_binds args relevant = mk_union (map (fv_bind args) relevant)
+      val alpha_rhs =
+        HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2)));
+      fun alpha_arg ((dt, arg_no), (arg, arg2)) =
+        let
+          val rel_in_simp_binds = filter (fn ((NONE, i, _, _), _) => i = arg_no | _ => false) bind_pis;
+          val rel_in_comp_binds = filter (fn ((SOME _, i, _, _), _) => i = arg_no | _ => false) bind_pis;
+          val rel_has_binds = filter (fn ((NONE, _, j, _), _) => j = arg_no
+                                       | ((SOME (_, false), _, j, _), _) => j = arg_no
+                                       | _ => false) bind_pis;
+          val rel_has_rec_binds = filter
+            (fn ((SOME (_, true), _, j, _), _) => j = arg_no | _ => false) bind_pis;
+        in
+          case (rel_in_simp_binds, rel_in_comp_binds, rel_has_binds, rel_has_rec_binds) of
+            ([], [], [], []) =>
+              if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2)
+              else (HOLogic.mk_eq (arg, arg2))
+          | (_, [], [], []) => @{term True}
+          | ([], [], [], _) => @{term True}
+          | ([], ((((SOME (bn, is_rec)), _, _, atyp), _) :: _), [], []) =>
+            if not (bns_same rel_in_comp_binds) then error "incompatible bindings for an argument" else
+            if is_rec then
+              let
+                val (rbinds, rpis) = split_list rel_in_comp_binds
+                val bound_in_nos = map (fn (_, _, i, _) => i) rbinds
+                val bound_in_ty_nos = map (fn i => body_index (nth dts i)) bound_in_nos;
+                val bound_args = arg :: map (nth args) bound_in_nos;
+                val bound_args2 = arg2 :: map (nth args2) bound_in_nos;
+                val lhs_binds = fv_binds args rbinds
+                val lhs_arg = foldr1 HOLogic.mk_prod bound_args
+                val lhs = mk_pair (lhs_binds, lhs_arg);
+                val rhs_binds = fv_binds args2 rbinds;
+                val rhs_arg = foldr1 HOLogic.mk_prod bound_args2;
+                val rhs = mk_pair (rhs_binds, rhs_arg);
+                val fvs = map (nth fv_frees) ((body_index dt) :: bound_in_ty_nos);
+                val fv = mk_compound_fv fvs;
+                val alphas = map (nth alpha_frees) ((body_index dt) :: bound_in_ty_nos);
+                val alpha = mk_compound_alpha alphas;
+                val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis);
+                val alpha_gen_pre = Const (atyp_const atyp, dummyT) $ lhs $ alpha $ fv $ pi $ rhs;
+                val alpha_gen = Syntax.check_term lthy alpha_gen_pre
+              in
+                alpha_gen
+              end
+            else
+              let
+                val alpha_bn_const =
+                  nth alpha_bn_frees (find_index (fn (b, _, _) => b = bn) bns)
+              in
+                alpha_bn_const $ arg $ arg2
+              end
+          | ([], [], relevant, []) =>
+            let
+              val (rbinds, rpis) = split_list relevant
+              val lhs_binds = fv_binds args rbinds
+              val lhs = mk_pair (lhs_binds, arg);
+              val rhs_binds = fv_binds args2 rbinds;
+              val rhs = mk_pair (rhs_binds, arg2);
+              val alpha = nth alpha_frees (body_index dt);
+              val fv = nth fv_frees (body_index dt);
+              val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis);
+              val alpha_const = alpha_const_for_binds rbinds;
+              val alpha_gen_pre = Const (alpha_const, dummyT) $ lhs $ alpha $ fv $ pi $ rhs;
+              val alpha_gen = Syntax.check_term lthy alpha_gen_pre
+            in
+              alpha_gen
+            end
+          | _ => error "Fv.alpha: not supported binding structure"
+        end
+      val alphas = map alpha_arg (dts ~~ arg_nos ~~ (args ~~ args2))
+      val alpha_lhss = mk_conjl alphas
+      val alpha_lhss_ex =
+        fold (fn pi_str => fn t => HOLogic.mk_exists (pi_str, @{typ perm}, t)) pi_strs alpha_lhss
+      val alpha_eq = Logic.mk_implies (HOLogic.mk_Trueprop alpha_lhss_ex, alpha_rhs)
+    in
+      alpha_eq
+    end;
+  fun alpha_eq (i, (_, _, constrs)) binds = map2i (alpha_constr i) constrs binds;
+  val alphaeqs = map2i alpha_eq descr (gather_binds bindsall)
+  val alpha_eqs = flat alphaeqs
+  val add_binds = map (fn x => (Attrib.empty_binding, x))
+  val (alphas, lthy') = (Inductive.add_inductive_i
+     {quiet_mode = true, verbose = false, alt_name = Binding.empty,
+      coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
+     (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) (alpha_names @ alpha_bn_names)
+     (alpha_types @ alpha_bn_types)) []
+     (add_binds (alpha_eqs @ flat alpha_bn_eqs)) [] lthy)
+in
+  (alphas, lthy')
+end
+*}
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Attic/Parser.thy	Sun May 02 14:06:26 2010 +0100
@@ -0,0 +1,670 @@
+theory Parser
+imports "../Nominal-General/Nominal2_Atoms" 
+        "../Nominal-General/Nominal2_Eqvt" 
+        "../Nominal-General/Nominal2_Supp" 
+        "Perm" "Equivp" "Rsp" "Lift"
+begin
+
+section{* Interface for nominal_datatype *}
+
+text {*
+
+Nominal-Datatype-part:
+
+
+1nd Arg: (string list * binding * mixfix * (binding * typ list * mixfix) list) list
+         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+               type(s) to be defined             constructors list
+               (ty args, name, syn)              (name, typs, syn)
+
+Binder-Function-part:
+
+2rd Arg: (binding * typ option * mixfix) list 
+         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^    
+            binding function(s)           
+              to be defined               
+            (name, type, syn)             
+
+3th Arg:  term list 
+          ^^^^^^^^^
+          the equations of the binding functions
+          (Trueprop equations)
+*}
+
+ML {*
+
+*}
+
+text {*****************************************************}
+ML {* 
+(* nominal datatype parser *)
+local
+  structure P = OuterParse
+
+  fun tuple ((x, y, z), u) = (x, y, z, u)
+  fun tswap (((x, y), z), u) = (x, y, u, z)
+in
+
+val _ = OuterKeyword.keyword "bind"
+val anno_typ = Scan.option (P.name --| P.$$$ "::") -- P.typ
+
+(* binding specification *)
+(* maybe use and_list *)
+val bind_parser = 
+  P.enum "," ((P.$$$ "bind" |-- P.term) -- (P.$$$ "in" |-- P.name) >> swap)
+
+val constr_parser =
+  P.binding -- Scan.repeat anno_typ
+
+(* datatype parser *)
+val dt_parser =
+  (P.type_args -- P.binding -- P.opt_mixfix >> P.triple1) -- 
+    (P.$$$ "=" |-- P.enum1 "|" (constr_parser -- bind_parser -- P.opt_mixfix >> tswap)) >> tuple
+
+(* function equation parser *)
+val fun_parser = 
+  Scan.optional (P.$$$ "binder" |-- P.fixes -- SpecParse.where_alt_specs) ([],[])
+
+(* main parser *)
+val main_parser =
+  (P.and_list1 dt_parser) -- fun_parser >> P.triple2
+
+end
+*}
+
+(* adds "_raw" to the end of constants and types *)
+ML {*
+fun add_raw s = s ^ "_raw"
+fun add_raws ss = map add_raw ss
+fun raw_bind bn = Binding.suffix_name "_raw" bn
+
+fun replace_str ss s = 
+  case (AList.lookup (op=) ss s) of 
+     SOME s' => s'
+   | NONE => s
+
+fun replace_typ ty_ss (Type (a, Ts)) = Type (replace_str ty_ss a, map (replace_typ ty_ss) Ts)
+  | replace_typ ty_ss T = T  
+
+fun raw_dts ty_ss dts =
+let
+
+  fun raw_dts_aux1 (bind, tys, mx) =
+    (raw_bind bind, map (replace_typ ty_ss) tys, mx)
+
+  fun raw_dts_aux2 (ty_args, bind, mx, constrs) =
+    (ty_args, raw_bind bind, mx, map raw_dts_aux1 constrs)
+in
+  map raw_dts_aux2 dts
+end
+
+fun replace_aterm trm_ss (Const (a, T)) = Const (replace_str trm_ss a, T)
+  | replace_aterm trm_ss (Free (a, T)) = Free (replace_str trm_ss a, T)
+  | replace_aterm trm_ss trm = trm
+
+fun replace_term trm_ss ty_ss trm =
+  trm |> Term.map_aterms (replace_aterm trm_ss) |> map_types (replace_typ ty_ss) 
+*}
+
+ML {*
+fun get_cnstrs dts =
+  map (fn (_, _, _, constrs) => constrs) dts
+
+fun get_typed_cnstrs dts =
+  flat (map (fn (_, bn, _, constrs) => 
+   (map (fn (bn', _, _) => (Binding.name_of bn, Binding.name_of bn')) constrs)) dts)
+
+fun get_cnstr_strs dts =
+  map (fn (bn, _, _) => Binding.name_of bn) (flat (get_cnstrs dts))
+
+fun get_bn_fun_strs bn_funs =
+  map (fn (bn_fun, _, _) => Binding.name_of bn_fun) bn_funs
+*}
+
+ML {*
+fun rawify_dts dt_names dts dts_env =
+let
+  val raw_dts = raw_dts dts_env dts
+  val raw_dt_names = add_raws dt_names
+in
+  (raw_dt_names, raw_dts)
+end 
+*}
+
+ML {*
+fun rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs =
+let
+  val bn_funs' = map (fn (bn, ty, mx) => 
+    (raw_bind bn, replace_typ dts_env ty, mx)) bn_funs
+  
+  val bn_eqs' = map (fn (attr, trm) => 
+    (attr, replace_term (cnstrs_env @ bn_fun_env) dts_env trm)) bn_eqs
+in
+  (bn_funs', bn_eqs') 
+end 
+*}
+
+ML {*
+fun apfst3 f (a, b, c) = (f a, b, c)
+*}
+
+ML {* 
+fun rawify_binds dts_env cnstrs_env bn_fun_env binds =
+  map (map (map (map (fn (opt_trm, i, j, aty) => 
+    (Option.map (apfst (replace_term (cnstrs_env @ bn_fun_env) dts_env)) opt_trm, i, j, aty))))) binds
+*}
+
+ML {*
+fun find [] _ = error ("cannot find element")
+  | find ((x, z)::xs) y = if (Long_Name.base_name x) = y then z else find xs y
+*}
+
+ML {*
+fun strip_bn_fun t =
+  case t of
+    Const (@{const_name sup}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r
+  | Const (@{const_name append}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r
+  | Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y =>
+      (i, NONE) :: strip_bn_fun y
+  | Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y =>
+      (i, NONE) :: strip_bn_fun y
+  | Const (@{const_name bot}, _) => []
+  | Const (@{const_name Nil}, _) => []
+  | (f as Free _) $ Bound i => [(i, SOME f)]
+  | _ => error ("Unsupported binding function: " ^ (PolyML.makestring t))
+*}
+
+ML {*
+fun prep_bn dt_names dts eqs = 
+let
+  fun aux eq = 
+  let
+    val (lhs, rhs) = eq
+      |> strip_qnt_body "all" 
+      |> HOLogic.dest_Trueprop
+      |> HOLogic.dest_eq
+    val (bn_fun, [cnstr]) = strip_comb lhs
+    val (_, ty) = dest_Free bn_fun
+    val (ty_name, _) = dest_Type (domain_type ty)
+    val dt_index = find_index (fn x => x = ty_name) dt_names
+    val (cnstr_head, cnstr_args) = strip_comb cnstr
+    val rhs_elements = strip_bn_fun rhs
+    val included = map (apfst (fn i => length (cnstr_args) - i - 1)) rhs_elements
+  in
+    (dt_index, (bn_fun, (cnstr_head, included)))
+  end 
+  fun order dts i ts = 
+  let
+    val dt = nth dts i
+    val cts = map (fn (x, _, _) => Binding.name_of x) ((fn (_, _, _, x) => x) dt)
+    val ts' = map (fn (x, y) => (fst (dest_Const x), y)) ts
+  in
+    map (find ts') cts
+  end
+
+  val unordered = AList.group (op=) (map aux eqs)
+  val unordered' = map (fn (x, y) =>  (x, AList.group (op=) y)) unordered
+  val ordered = map (fn (x, y) => (x, map (fn (v, z) => (v, order dts x z)) y)) unordered' 
+in
+  ordered
+end
+*}
+
+ML {* 
+fun add_primrec_wrapper funs eqs lthy = 
+  if null funs then (([], []), lthy)
+  else 
+   let 
+     val eqs' = map (fn (_, eq) => (Attrib.empty_binding, eq)) eqs
+     val funs' = map (fn (bn, ty, mx) => (bn, SOME ty, mx)) funs
+   in 
+     Primrec.add_primrec funs' eqs' lthy
+   end
+*}
+
+ML {*
+fun add_datatype_wrapper dt_names dts =
+let
+  val conf = Datatype.default_config
+in
+  Local_Theory.theory_result (Datatype.add_datatype conf dt_names dts)
+end
+*}
+
+ML {* 
+fun raw_nominal_decls dts bn_funs bn_eqs binds lthy =
+let
+  val thy = ProofContext.theory_of lthy
+  val thy_name = Context.theory_name thy
+
+  val dt_names = map (fn (_, s, _, _) => Binding.name_of s) dts
+  val dt_full_names = map (Long_Name.qualify thy_name) dt_names 
+  val dt_full_names' = add_raws dt_full_names
+  val dts_env = dt_full_names ~~ dt_full_names'
+
+  val cnstrs = get_cnstr_strs dts
+  val cnstrs_ty = get_typed_cnstrs dts
+  val cnstrs_full_names = map (Long_Name.qualify thy_name) cnstrs
+  val cnstrs_full_names' = map (fn (x, y) => Long_Name.qualify thy_name 
+    (Long_Name.qualify (add_raw x) (add_raw y))) cnstrs_ty
+  val cnstrs_env = cnstrs_full_names ~~ cnstrs_full_names'
+
+  val bn_fun_strs = get_bn_fun_strs bn_funs
+  val bn_fun_strs' = add_raws bn_fun_strs
+  val bn_fun_env = bn_fun_strs ~~ bn_fun_strs'
+  val bn_fun_full_env = map (pairself (Long_Name.qualify thy_name)) 
+    (bn_fun_strs ~~ bn_fun_strs')
+  
+  val (raw_dt_names, raw_dts) = rawify_dts dt_names dts dts_env
+
+  val (raw_bn_funs, raw_bn_eqs) = rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs 
+  
+  val raw_binds = rawify_binds dts_env cnstrs_env bn_fun_full_env binds 
+
+  val raw_bns = prep_bn dt_full_names' raw_dts (map snd raw_bn_eqs)
+
+(*val _ = tracing (cat_lines (map PolyML.makestring raw_bns))*)
+in
+  lthy 
+  |> add_datatype_wrapper raw_dt_names raw_dts 
+  ||>> add_primrec_wrapper raw_bn_funs raw_bn_eqs
+  ||>> pair raw_binds
+  ||>> pair raw_bns
+end
+*}
+
+lemma equivp_hack: "equivp x"
+sorry
+ML {*
+fun equivp_hack ctxt rel =
+let
+  val thy = ProofContext.theory_of ctxt
+  val ty = domain_type (fastype_of rel)
+  val cty = ctyp_of thy ty
+  val ct = cterm_of thy rel
+in
+  Drule.instantiate' [SOME cty] [SOME ct] @{thm equivp_hack}
+end
+*}
+
+ML {* val cheat_alpha_eqvt = Unsynchronized.ref false *}
+ML {* val cheat_equivp = Unsynchronized.ref false *}
+ML {* val cheat_fv_rsp = Unsynchronized.ref false *}
+ML {* val cheat_const_rsp = Unsynchronized.ref false *}
+
+(* nominal_datatype2 does the following things in order:
+
+Parser.thy/raw_nominal_decls
+  1) define the raw datatype
+  2) define the raw binding functions 
+
+Perm.thy/define_raw_perms
+  3) define permutations of the raw datatype and show that the raw type is 
+     in the pt typeclass
+      
+Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha
+  4) define fv and fv_bn
+  5) define alpha and alpha_bn
+
+Perm.thy/distinct_rel
+  6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...)             (Proof by cases; simp)
+
+Tacs.thy/build_rel_inj
+  6) prove alpha_eq_iff    (C1 x = C2 y \<leftrightarrow> P x y ...)
+     (left-to-right by intro rule, right-to-left by cases; simp)
+Equivp.thy/prove_eqvt
+  7) prove bn_eqvt (common induction on the raw datatype)
+  8) prove fv_eqvt (common induction on the raw datatype with help of above)
+Rsp.thy/build_alpha_eqvts
+  9) prove alpha_eqvt and alpha_bn_eqvt
+     (common alpha-induction, unfolding alpha_gen, permute of #* and =)
+Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps
+ 10) prove that alpha and alpha_bn are equivalence relations
+     (common induction and application of 'compose' lemmas)
+Lift.thy/define_quotient_types
+ 11) define quotient types
+Rsp.thy/build_fvbv_rsps
+ 12) prove bn respects     (common induction and simp with alpha_gen)
+Rsp.thy/prove_const_rsp
+ 13) prove fv respects     (common induction and simp with alpha_gen)
+ 14) prove permute respects    (unfolds to alpha_eqvt)
+Rsp.thy/prove_alpha_bn_rsp
+ 15) prove alpha_bn respects
+     (alpha_induct then cases then sym and trans of the relations)
+Rsp.thy/prove_alpha_alphabn
+ 16) show that alpha implies alpha_bn (by unduction, needed in following step)
+Rsp.thy/prove_const_rsp
+ 17) prove respects for all datatype constructors
+     (unfold eq_iff and alpha_gen; introduce zero permutations; simp)
+Perm.thy/quotient_lift_consts_export
+ 18) define lifted constructors, fv, bn, alpha_bn, permutations
+Perm.thy/define_lifted_perms
+ 19) lift permutation zero and add properties to show that quotient type is in the pt typeclass
+Lift.thy/lift_thm
+ 20) lift permutation simplifications
+ 21) lift induction
+ 22) lift fv
+ 23) lift bn
+ 24) lift eq_iff
+ 25) lift alpha_distincts
+ 26) lift fv and bn eqvts
+Equivp.thy/prove_supports
+ 27) prove that union of arguments supports constructors
+Equivp.thy/prove_fs
+ 28) show that the lifted type is in fs typeclass     (* by q_induct, supports *)
+Equivp.thy/supp_eq
+ 29) prove supp = fv
+*)
+ML {*
+fun nominal_datatype2 dts bn_funs bn_eqs binds lthy =
+let
+  val _ = tracing "Raw declarations";
+  val thy = ProofContext.theory_of lthy
+  val thy_name = Context.theory_name thy
+  val ((((raw_dt_names, (raw_bn_funs_loc, raw_bn_eqs_loc)), raw_binds), raw_bns), lthy2) =
+    raw_nominal_decls dts bn_funs bn_eqs binds lthy
+  val morphism_2_1 = ProofContext.export_morphism lthy2 lthy
+  fun export_fun f (t, l) = (f t, map (map (apsnd (Option.map f))) l);
+  val raw_bns_exp = map (apsnd (map (export_fun (Morphism.term morphism_2_1)))) raw_bns;
+  val bn_funs_decls = flat (map (fn (ith, l) => map (fn (bn, data) => (bn, ith, data)) l) raw_bns_exp);
+  val raw_bn_funs = map (Morphism.term morphism_2_1) raw_bn_funs_loc
+  val raw_bn_eqs = ProofContext.export lthy2 lthy raw_bn_eqs_loc
+
+  val dtinfo = Datatype.the_info (ProofContext.theory_of lthy2) (hd raw_dt_names);
+  val {descr, sorts, ...} = dtinfo;
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+  val raw_tys = map (fn (i, _) => nth_dtyp i) descr;
+  val all_typs = map (fn i => typ_of_dtyp descr sorts (DtRec i)) (map fst descr)
+  val all_full_tnames = map (fn (_, (n, _, _)) => n) descr;
+  val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy2)) all_full_tnames;
+  val rel_dtinfos = List.take (dtinfos, (length dts));
+  val inject = flat (map #inject dtinfos);
+  val distincts = flat (map #distinct dtinfos);
+  val rel_distinct = map #distinct rel_dtinfos;
+  val induct = #induct dtinfo;
+  val exhausts = map #exhaust dtinfos;
+  val _ = tracing "Defining permutations, fv and alpha";
+  val ((raw_perm_def, raw_perm_simps, perms), lthy3) =
+    Local_Theory.theory_result (define_raw_perms dtinfo (length dts)) lthy2;
+  val raw_binds_flat = map (map flat) raw_binds;
+  val ((((_, fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), lthy4) =
+    define_fv_alpha_export dtinfo raw_binds_flat bn_funs_decls lthy3;
+  val (fv, fvbn) = chop (length perms) fv_ts;
+
+  val (alpha_ts_nobn, alpha_ts_bn) = chop (length fv) alpha_ts
+  val dts_names = map (fn (i, (s, _, _)) => (s, i)) (#descr dtinfo);
+  val bn_tys = map (domain_type o fastype_of) raw_bn_funs;
+  val bn_nos = map (dtyp_no_of_typ dts_names) bn_tys;
+  val bns = raw_bn_funs ~~ bn_nos;
+  val rel_dists = flat (map (distinct_rel lthy4 alpha_cases)
+    (rel_distinct ~~ alpha_ts_nobn));
+  val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases)
+    ((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn))
+  val alpha_eq_iff = build_rel_inj alpha_intros (inject @ distincts) alpha_cases lthy4
+  val _ = tracing "Proving equivariance";
+  val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4
+  val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct (fv_def @ raw_perm_def) (fv @ fvbn) lthy5
+  fun alpha_eqvt_tac' _ =
+    if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy
+    else alpha_eqvt_tac alpha_induct (raw_perm_def @ alpha_eq_iff) lthy6 1
+  val alpha_eqvt = build_alpha_eqvts alpha_ts alpha_eqvt_tac' lthy6;
+  val _ = tracing "Proving equivalence";
+  val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos;
+  val reflps = build_alpha_refl fv_alpha_all alpha_ts induct alpha_eq_iff lthy6;
+  val alpha_equivp =
+    if !cheat_equivp then map (equivp_hack lthy6) alpha_ts_nobn
+    else build_equivps alpha_ts reflps alpha_induct
+      inject alpha_eq_iff distincts alpha_cases alpha_eqvt lthy6;
+  val qty_binds = map (fn (_, b, _, _) => b) dts;
+  val qty_names = map Name.of_binding qty_binds;
+  val qty_full_names = map (Long_Name.qualify thy_name) qty_names
+  val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6;
+  val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts));
+  val raw_consts =
+    flat (map (fn (i, (_, _, l)) =>
+      map (fn (cname, dts) =>
+        Const (cname, map (typ_of_dtyp descr sorts) dts --->
+          typ_of_dtyp descr sorts (DtRec i))) l) descr);
+  val (consts, const_defs, lthy8) = quotient_lift_consts_export qtys (const_names ~~ raw_consts) lthy7;
+  val _ = tracing "Proving respects";
+  val bns_rsp_pre' = build_fvbv_rsps alpha_ts alpha_induct raw_bn_eqs (map fst bns) lthy8;
+  val (bns_rsp_pre, lthy9) = fold_map (
+    fn (bn_t, _) => prove_const_rsp qtys Binding.empty [bn_t] (fn _ =>
+       resolve_tac bns_rsp_pre' 1)) bns lthy8;
+  val bns_rsp = flat (map snd bns_rsp_pre);
+  fun fv_rsp_tac _ = if !cheat_fv_rsp then Skip_Proof.cheat_tac thy
+    else fvbv_rsp_tac alpha_induct fv_def lthy8 1;
+  val fv_rsps = prove_fv_rsp fv_alpha_all alpha_ts fv_rsp_tac lthy9;
+  val (fv_rsp_pre, lthy10) = fold_map
+    (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv]
+    (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9;
+  val fv_rsp = flat (map snd fv_rsp_pre);
+  val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms
+    (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10;
+  val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff @ rel_dists @ rel_dists_bn) alpha_equivp exhausts alpha_ts_bn lthy11;
+  val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
+        (fn _ => asm_simp_tac (HOL_ss addsimps alpha_bn_rsp_pre) 1)) alpha_ts_bn lthy11
+(*  val _ = map tracing (map PolyML.makestring alpha_bn_rsps);*)
+  fun const_rsp_tac _ =
+    if !cheat_const_rsp then Skip_Proof.cheat_tac thy
+    else let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff alpha_ts_bn lthy11a
+      in constr_rsp_tac alpha_eq_iff (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end
+  val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
+    const_rsp_tac) raw_consts lthy11a
+  val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn)
+  val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12;
+  val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts;
+  val qbn_names = map (fn (b, _ , _) => Name.of_binding b) bn_funs
+  val (qbn_ts, qbn_defs, lthy12b) = quotient_lift_consts_export qtys (qbn_names ~~ raw_bn_funs) lthy12a;
+  val qalpha_bn_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) alpha_ts_bn
+  val (qalpha_ts_bn, qalphabn_defs, lthy12c) = quotient_lift_consts_export qtys (qalpha_bn_names ~~ alpha_ts_bn) lthy12b;
+  val _ = tracing "Lifting permutations";
+  val thy = Local_Theory.exit_global lthy12c;
+  val perm_names = map (fn x => "permute_" ^ x) qty_names
+  val thy' = define_lifted_perms qtys qty_full_names (perm_names ~~ perms) raw_perm_simps thy;
+  val lthy13 = Theory_Target.init NONE thy';
+  val q_name = space_implode "_" qty_names;
+  fun suffix_bind s = Binding.qualify true q_name (Binding.name s);
+  val _ = tracing "Lifting induction";
+  val constr_names = map (Long_Name.base_name o fst o dest_Const) consts;
+  val q_induct = Rule_Cases.name constr_names (lift_thm qtys lthy13 induct);
+  fun note_suffix s th ctxt =
+    snd (Local_Theory.note ((suffix_bind s, []), th) ctxt);
+  fun note_simp_suffix s th ctxt =
+    snd (Local_Theory.note ((suffix_bind s, [Attrib.internal (K Simplifier.simp_add)]), th) ctxt);
+  val (_, lthy14) = Local_Theory.note ((suffix_bind "induct",
+    [Attrib.internal (K (Rule_Cases.case_names constr_names))]), [Rule_Cases.name constr_names q_induct]) lthy13;
+  val q_inducts = Project_Rule.projects lthy13 (1 upto (length fv)) q_induct
+  val (_, lthy14a) = Local_Theory.note ((suffix_bind "inducts", []), q_inducts) lthy14;
+  val q_perm = map (lift_thm qtys lthy14) raw_perm_def;
+  val lthy15 = note_simp_suffix "perm" q_perm lthy14a;
+  val q_fv = map (lift_thm qtys lthy15) fv_def;
+  val lthy16 = note_simp_suffix "fv" q_fv lthy15;
+  val q_bn = map (lift_thm qtys lthy16) raw_bn_eqs;
+  val lthy17 = note_simp_suffix "bn" q_bn lthy16;
+  val _ = tracing "Lifting eq-iff";
+  val _ = map tracing (map PolyML.makestring alpha_eq_iff);
+  val eq_iff_unfolded0 = map (Local_Defs.unfold lthy17 @{thms alphas3}) alpha_eq_iff
+  val eq_iff_unfolded1 = map (Local_Defs.unfold lthy17 @{thms alphas2}) eq_iff_unfolded0
+  val eq_iff_unfolded2 = map (Local_Defs.unfold lthy17 @{thms alphas} ) eq_iff_unfolded1
+  val q_eq_iff_pre0 = map (lift_thm qtys lthy17) eq_iff_unfolded2;
+  val q_eq_iff_pre1 = map (Local_Defs.fold lthy17 @{thms alphas3}) q_eq_iff_pre0
+  val q_eq_iff_pre2 = map (Local_Defs.fold lthy17 @{thms alphas2}) q_eq_iff_pre1
+  val q_eq_iff = map (Local_Defs.fold lthy17 @{thms alphas}) q_eq_iff_pre2
+  val (_, lthy18) = Local_Theory.note ((suffix_bind "eq_iff", []), q_eq_iff) lthy17;
+  val q_dis = map (lift_thm qtys lthy18) rel_dists;
+  val lthy19 = note_simp_suffix "distinct" q_dis lthy18;
+  val q_eqvt = map (lift_thm qtys lthy19) (bv_eqvt @ fv_eqvt);
+  val (_, lthy20) = Local_Theory.note ((Binding.empty,
+    [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), q_eqvt) lthy19;
+  val _ = tracing "Finite Support";
+  val supports = map (prove_supports lthy20 q_perm) consts;
+  val fin_supp = HOLogic.conj_elims (prove_fs lthy20 q_induct supports qtys);
+  val thy3 = Local_Theory.exit_global lthy20;
+  val lthy21 = Theory_Target.instantiation (qty_full_names, [], @{sort fs}) thy3;
+  fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp))
+  val lthy22 = Class.prove_instantiation_instance tac lthy21
+  val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos;
+  val (names, supp_eq_t) = supp_eq fv_alpha_all;
+  val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t (fn _ => supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1)) handle _ => [];
+  val lthy23 = note_suffix "supp" q_supp lthy22;
+in
+  ((raw_dt_names, raw_bn_funs, raw_bn_eqs, raw_binds), lthy23)
+end
+*}
+
+
+ML {* 
+(* parsing the datatypes and declaring *)
+(* constructors in the local theory    *)
+fun prepare_dts dt_strs lthy = 
+let
+  val thy = ProofContext.theory_of lthy
+  
+  fun mk_type full_tname tvrs =
+    Type (full_tname, map (fn a => TVar ((a, 0), [])) tvrs)
+
+  fun prep_cnstr lthy full_tname tvs (cname, anno_tys, mx, _) =
+  let
+    val tys = map (Syntax.read_typ lthy o snd) anno_tys
+    val ty = mk_type full_tname tvs
+  in
+    ((cname, tys ---> ty, mx), (cname, tys, mx))
+  end
+  
+  fun prep_dt lthy (tvs, tname, mx, cnstrs) = 
+  let
+    val full_tname = Sign.full_name thy tname
+    val (cnstrs', cnstrs'') = 
+      split_list (map (prep_cnstr lthy full_tname tvs) cnstrs)
+  in
+    (cnstrs', (tvs, tname, mx, cnstrs''))
+  end 
+
+  val (cnstrs, dts) = 
+    split_list (map (prep_dt lthy) dt_strs)
+in
+  lthy
+  |> Local_Theory.theory (Sign.add_consts_i (flat cnstrs))
+  |> pair dts
+end
+*}
+
+ML {*
+(* parsing the binding function specification and *)
+(* declaring the functions in the local theory    *)
+fun prepare_bn_funs bn_fun_strs bn_eq_strs lthy =
+let
+  val ((bn_funs, bn_eqs), _) = 
+    Specification.read_spec bn_fun_strs bn_eq_strs lthy
+
+  fun prep_bn_fun ((bn, T), mx) = (bn, T, mx) 
+  val bn_funs' = map prep_bn_fun bn_funs
+in
+  lthy
+  |> Local_Theory.theory (Sign.add_consts_i bn_funs')
+  |> pair (bn_funs', bn_eqs) 
+end 
+*}
+
+ML {*
+fun find_all eq xs (k',i) = 
+  maps (fn (k, (v1, v2)) => if eq (k, k') then [(v1, v2, i)] else []) xs
+*}
+
+ML {*
+(* associates every SOME with the index in the list; drops NONEs *)
+fun mk_env xs =
+  let
+    fun mapp (_: int) [] = []
+      | mapp i (a :: xs) = 
+         case a of
+           NONE => mapp (i + 1) xs
+         | SOME x => (x, i) :: mapp (i + 1) xs
+  in mapp 0 xs end
+*}
+
+ML {*
+fun env_lookup xs x =
+  case AList.lookup (op =) xs x of
+    SOME x => x
+  | NONE => error ("cannot find " ^ x ^ " in the binding specification.");
+*}
+
+ML {*
+val recursive = Unsynchronized.ref false
+val alpha_type = Unsynchronized.ref AlphaGen
+*}
+
+ML {*
+fun prepare_binds dt_strs lthy = 
+let
+  fun extract_annos_binds dt_strs =
+    map (map (fn (_, antys, _, bns) => (map fst antys, bns))) dt_strs
+
+  fun prep_bn env bn_str =
+    case (Syntax.read_term lthy bn_str) of
+       Free (x, _) => (NONE, env_lookup env x)
+     | Const (a, T) $ Free (x, _) => (SOME (Const (a, T), !recursive), env_lookup env x)
+     | _ => error (bn_str ^ " not allowed as binding specification.");  
+ 
+  fun prep_typ env (i, opt_name) = 
+    case opt_name of
+      NONE => []
+    | SOME x => find_all (op=) env (x,i);
+        
+  (* annos - list of annotation for each type (either NONE or SOME fo a type *)
+  
+  fun prep_binds (annos, bind_strs) = 
+  let
+    val env = mk_env annos (* for every label the index *)
+    val binds = map (fn (x, y) => (x, prep_bn env y)) bind_strs  
+  in
+    map_index (prep_typ binds) annos
+  end
+
+  val result = map (map (map (map (fn (a, b, c) => 
+    (a, b, c, if !alpha_type=AlphaLst andalso a = NONE then AlphaGen else !alpha_type)))))
+      (map (map prep_binds) (extract_annos_binds (get_cnstrs dt_strs)))
+ 
+  val _ = warning (@{make_string} result)
+
+in
+  result
+end
+*}
+
+ML {*
+fun nominal_datatype2_cmd (dt_strs, bn_fun_strs, bn_eq_strs) lthy =
+let
+  fun prep_typ (tvs, tname, mx, _) = (tname, length tvs, mx)
+
+  val lthy0 = 
+    Local_Theory.theory (Sign.add_types (map prep_typ dt_strs)) lthy
+  val (dts, lthy1) = 
+    prepare_dts dt_strs lthy0
+  val ((bn_funs, bn_eqs), lthy2) = 
+    prepare_bn_funs bn_fun_strs bn_eq_strs lthy1
+  val binds = prepare_binds dt_strs lthy2
+in
+  nominal_datatype2 dts bn_funs bn_eqs binds lthy |> snd
+end
+*}
+
+
+(* Command Keyword *)
+
+ML {*
+let
+   val kind = OuterKeyword.thy_decl
+in
+   OuterSyntax.local_theory "nominal_datatype" "test" kind 
+     (main_parser >> nominal_datatype2_cmd)
+end
+*}
+
+
+end
+
+
+
--- a/Nominal/Equivp.thy	Sat May 01 09:15:46 2010 +0100
+++ b/Nominal/Equivp.thy	Sun May 02 14:06:26 2010 +0100
@@ -1,5 +1,5 @@
 theory Equivp
-imports "Fv"
+imports "NewFv" "Tacs" "Rsp" "NewFv"
 begin
 
 ML {*
@@ -188,7 +188,7 @@
   val rhs = list_comb (cnstr, frees)
 
   fun mk_supp_arg (x, ty) =
-    if is_atom thy ty then mk_supp @{typ atom} (mk_atom ty $ x) else
+    if is_atom thy ty then mk_supp @{typ atom} (mk_atom_ty ty x) else
     if is_atom_set thy ty then mk_supp @{typ "atom set"} (mk_atom_set x) else
     if is_atom_fset thy ty then mk_supp @{typ "atom set"} (mk_atom_fset x)
     else mk_supp ty x
--- a/Nominal/Ex/Classical.thy	Sat May 01 09:15:46 2010 +0100
+++ b/Nominal/Ex/Classical.thy	Sun May 02 14:06:26 2010 +0100
@@ -1,5 +1,5 @@
 theory Classical
-imports "../Parser"
+imports "../NewParser"
 begin
 
 (* example from my Urban's PhD *)
@@ -8,7 +8,6 @@
   alpha_trm_raw is incorrectly defined, therefore the equivalence proof
   does not go through; below the correct definition is given
 *)
-ML {* val _ = cheat_equivp := true *}
 
 atom_decl name
 atom_decl coname
@@ -20,7 +19,7 @@
 |  AndL1 n::"name" t::"trm" "name"                              bind n in t
 |  AndL2 n::"name" t::"trm" "name"                              bind n in t
 |  ImpL c::"coname" t1::"trm" n::"name" t2::"trm" "name"        bind c in t1, bind n in t2
-|  ImpR c::"coname" n::"name" t::"trm" "coname"                 bind n in t, bind c in t
+|  ImpR c::"coname" n::"name" t::"trm" "coname"                 bind n c in t
 
 
 thm trm.fv
--- a/Nominal/Fv.thy	Sat May 01 09:15:46 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,652 +0,0 @@
-theory Fv
-imports "../Nominal-General/Nominal2_Atoms" 
-        "Abs" "Perm" "Rsp" "Nominal2_FSet"
-begin
-
-(* The bindings data structure:
-
-  Bindings are a list of lists of lists of triples.
-
-   The first list represents the datatypes defined.
-   The second list represents the constructors.
-   The internal list is a list of all the bndings that
-   concern the constructor.
-
-   Every triple consists of a function, the binding and
-   the body.
-
-  Eg:
-nominal_datatype
-
-   C1
- | C2 x y z bind x in z
- | C3 x y z bind f x in z bind g y in z
-
-yields:
-[
- [],
- [(NONE, 0, 2)],
- [(SOME (Const f), 0, 2), (Some (Const g), 1, 2)]]
-
-A SOME binding has to have a function which takes an appropriate
-argument and returns an atom set. A NONE binding has to be on an
-argument that is an atom or an atom set.
-*)
-
-(*
-An overview of the generation of free variables:
-
-1) fv_bn functions are generated only for the non-recursive binds.
-
-   An fv_bn for a constructor is a union of values for the arguments:
-
-   For an argument x that is in the bn function
-   - if it is a recursive argument bn' we return: fv_bn' x
-   - otherwise empty
-
-   For an argument x that is not in the bn function
-   - for atom we return: {atom x}
-   - for atom set we return: atom ` x
-   - for a recursive call to type ty' we return: fv_ty' x
-     with fv of the appropriate type
-   - otherwise empty
-
-2) fv_ty functions generated for all types being defined:
-
-   fv_ty for a constructor is a union of values for the arguments.
-
-   For an argument that is bound in a shallow binding we return empty.
-
-   For an argument x that bound in a non-recursive deep binding
-   we return: fv_bn x.
-
-   Otherwise we return the free variables of the argument minus the
-   bound variables of the argument.
-
-   The free variables for an argument x are:
-   - for an atom: {atom x}
-   - for atom set: atom ` x
-   - for recursive call to type ty' return: fv_ty' x
-   - for nominal datatype ty' return: fv_ty' x
-
-   The bound variables are a union of results of all bindings that
-   involve the given argument. For a paricular binding:
-
-   - for a binding function bn: bn x
-   - for a recursive argument of type ty': fv_fy' x
-   - for nominal datatype ty' return: fv_ty' x
-*)
-
-(*
-An overview of the generation of alpha-equivalence:
-
-1) alpha_bn relations are generated for binding functions.
-
-   An alpha_bn for a constructor is true if a conjunction of
-   propositions for each argument holds.
-
-   For an argument a proposition is build as follows from
-   th:
-
-   - for a recursive argument in the bn function, we return: alpha_bn argl argr
-   - for a recursive argument for type ty not in bn, we return: alpha_ty argl argr
-   - for other arguments in the bn function we return: True
-   - for other arguments not in the bn function we return: argl = argr
-
-2) alpha_ty relations are generated for all the types being defined:
-
-   For each constructor we gather all the arguments that are bound,
-   and for each of those we add a permutation. We associate those
-   permutations with the bindings. Note that two bindings can have
-   the same permutation if the arguments being bound are the same.
-
-   An alpha_ty for a constructor is true if there exist permutations
-   as above such that a conjunction of propositions for all arguments holds.
-
-   For an argument we allow bindings where only one of the following
-   holds:
-
-   - Argument is bound in some shallow bindings: We return true
-   - Argument of type ty is bound recursively in some other
-     arguments [i1, .. in] with one binding function bn.
-     We return:
-
-     (bn argl, (argl, argl_i1, ..., argl_in)) \<approx>gen
-     \<lambda>(argl,argl1,..,argln) (argr,argr1,..,argrn). 
-         (alpha_ty argl argr) \<and> (alpha_i1 argl1 argr1) \<and> .. \<and> (alpha_in argln argrn)
-     \<lambda>(arg,arg1,..,argn). (fv_ty arg) \<union> (fv_i1 arg1) \<union> .. \<union> (fv_in argn)
-     pi
-     (bn argr, (argr, argr_i1, ..., argr_in))
-
-   - Argument is bound in some deep non-recursive bindings.
-     We return: alpha_bn argl argr
-   - Argument of type ty has some shallow bindings [b1..bn] and/or
-     non-recursive bindings [f1 a1, .., fm am], where the bindings
-     have the permutations p1..pl. We return:
-
-     (b1l \<union>..\<union> bnl \<union> f1 a1l \<union>..\<union> fn anl, argl) \<approx>gen
-     alpha_ty fv_ty (p1 +..+ pl)
-     (b1r \<union>..\<union> bnr \<union> f1 a1r \<union>..\<union> fn anr, argr)
-
-   - Argument has some recursive bindings. The bindings were
-     already treated in 2nd case so we return: True
-   - Argument has no bindings and is not bound.
-     If it is recursive for type ty, we return: alpha_ty argl argr
-     Otherwise we return: argl = argr
-
-*)
-
-ML {*
-datatype alpha_mode = AlphaGen | AlphaRes | AlphaLst;
-*}
-
-ML {*
-fun atyp_const AlphaGen = @{const_name alpha_gen}
-  | atyp_const AlphaRes = @{const_name alpha_res}
-  | atyp_const AlphaLst = @{const_name alpha_lst}
-*}
-
-(* TODO: make sure that parser checks that bindings are compatible *)
-ML {*
-fun alpha_const_for_binds [] = atyp_const AlphaGen
-  | alpha_const_for_binds ((NONE, _, _, at) :: t) = atyp_const at
-  | alpha_const_for_binds ((SOME (_, _), _, _, at) :: _) = atyp_const at
-*}
-
-ML {*
-fun is_atom thy typ =
-  Sign.of_sort thy (typ, @{sort at})
-
-fun is_atom_set thy (Type ("fun", [t, @{typ bool}])) = is_atom thy t
-  | is_atom_set _ _ = false;
-
-fun is_atom_fset thy (Type ("FSet.fset", [t])) = is_atom thy t
-  | is_atom_fset _ _ = false;
-*}
-
-
-(* Like map2, only if the second list is empty passes empty lists insted of error *)
-ML {*
-fun map2i _ [] [] = []
-  | map2i f (x :: xs) (y :: ys) = f x y :: map2i f xs ys
-  | map2i f (x :: xs) [] = f x [] :: map2i f xs []
-  | map2i _ _ _ = raise UnequalLengths;
-*}
-
-(* Finds bindings with the same function and binding, and gathers all
-   bodys for such pairs
- *)
-ML {*
-fun gather_binds binds =
-let
-  fun gather_binds_cons binds =
-    let
-      val common = map (fn (f, bi, _, aty) => (f, bi, aty)) binds
-      val nodups = distinct (op =) common
-      fun find_bodys (sf, sbi, sty) =
-        filter (fn (f, bi, _, aty) => f = sf andalso bi = sbi andalso aty = sty) binds
-      val bodys = map ((map (fn (_, _, bo, _) => bo)) o find_bodys) nodups
-    in
-      nodups ~~ bodys
-    end
-in
-  map (map gather_binds_cons) binds
-end
-*}
-
-ML {*
-fun un_gather_binds_cons binds =
-  flat (map (fn (((f, bi, aty), bos), pi) => map (fn bo => ((f, bi, bo, aty), pi)) bos) binds)
-*}
-
-ML {*
-  open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *);
-*}
-ML {*
-  (* TODO: It is the same as one in 'nominal_atoms' *)
-  fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom});
-  val noatoms = @{term "{} :: atom set"};
-  fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x];
-  fun mk_union sets =
-    fold (fn a => fn b =>
-      if a = noatoms then b else
-      if b = noatoms then a else
-      if a = b then a else
-      HOLogic.mk_binop @{const_name sup} (a, b)) (rev sets) noatoms;
-  val mk_inter = foldr1 (HOLogic.mk_binop @{const_name inf})
-  fun mk_diff a b =
-    if b = noatoms then a else
-    if b = a then noatoms else
-    HOLogic.mk_binop @{const_name minus} (a, b);
-  fun mk_atom_set t =
-    let
-      val ty = fastype_of t;
-      val atom_ty = HOLogic.dest_setT ty --> @{typ atom};
-      val img_ty = atom_ty --> ty --> @{typ "atom set"};
-    in
-      (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t)
-    end;
-  fun mk_atom_fset t =
-    let
-      val ty = fastype_of t;
-      val atom_ty = dest_fsetT ty --> @{typ atom};
-      val fmap_ty = atom_ty --> ty --> @{typ "atom fset"};
-      val fset_to_set = @{term "fset_to_set :: atom fset \<Rightarrow> atom set"}
-    in
-      fset_to_set $ ((Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t))
-    end;
-  (* Similar to one in USyntax *)
-  fun mk_pair (fst, snd) =
-    let val ty1 = fastype_of fst
-      val ty2 = fastype_of snd
-      val c = HOLogic.pair_const ty1 ty2
-    in c $ fst $ snd
-    end;
-*}
-
-(* Given [fv1, fv2, fv3] creates %(x, y, z). fv1 x u fv2 y u fv3 z *)
-ML {*
-fun mk_compound_fv fvs =
-let
-  val nos = (length fvs - 1) downto 0;
-  val fvs_applied = map (fn (fv, no) => fv $ Bound no) (fvs ~~ nos);
-  val fvs_union = mk_union fvs_applied;
-  val (tyh :: tys) = rev (map (domain_type o fastype_of) fvs);
-  fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
-in
-  fold fold_fun tys (Abs ("", tyh, fvs_union))
-end;
-*}
-
-(* Given [R1, R2, R3] creates %(x,x'). %(y,y'). %(z,z'). R x x' \<and> R y y' \<and> R z z' *)
-ML {*
-fun mk_compound_alpha Rs =
-let
-  val nos = (length Rs - 1) downto 0;
-  val nos2 = (2 * length Rs - 1) downto length Rs;
-  val Rs_applied = map (fn (R, (no2, no)) => R $ Bound no2 $ Bound no) (Rs ~~ (nos2 ~~ nos));
-  val Rs_conj = mk_conjl Rs_applied;
-  val (tyh :: tys) = rev (map (domain_type o fastype_of) Rs);
-  fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
-  val abs_rhs = fold fold_fun tys (Abs ("", tyh, Rs_conj))
-in
-  fold fold_fun tys (Abs ("", tyh, abs_rhs))
-end;
-*}
-
-
-ML {*
-fun non_rec_binds l =
-let
-  fun is_non_rec (SOME (f, false), _, _, _) = SOME f
-    | is_non_rec _ = NONE
-in
-  distinct (op =) (map_filter is_non_rec (flat (flat l)))
-end
-*}
-
-(* We assume no bindings in the type on which bn is defined *)
-ML {*
-fun fv_bn thy (dt_info : Datatype_Aux.info) fv_frees bn_fvbn (fvbn, (bn, ith_dtyp, args_in_bns)) =
-let
-  val {descr, sorts, ...} = dt_info;
-  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
-  fun fv_bn_constr (cname, dts) args_in_bn =
-  let
-    val Ts = map (typ_of_dtyp descr sorts) dts;
-    val names = Datatype_Prop.make_tnames Ts;
-    val args = map Free (names ~~ Ts);
-    val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
-    fun fv_arg ((dt, x), arg_no) =
-      let
-        val ty = fastype_of x
-(*        val _ = tracing ("B 1" ^ PolyML.makestring args_in_bn);*)
-(*        val _ = tracing ("B 2" ^ PolyML.makestring bn_fvbn);*)
-      in
-        case AList.lookup (op=) args_in_bn arg_no of
-          SOME NONE => @{term "{} :: atom set"}
-        | SOME (SOME (f : term)) => (the (AList.lookup (op=) bn_fvbn f)) $ x
-        | NONE =>
-            if is_atom thy ty then mk_single_atom x else
-            if is_atom_set thy ty then mk_atom_set x else
-            if is_atom_fset thy ty then mk_atom_fset x else
-            if is_rec_type dt then nth fv_frees (body_index dt) $ x else
-            @{term "{} :: atom set"}
-      end;
-    val arg_nos = 0 upto (length dts - 1)
-  in
-    HOLogic.mk_Trueprop (HOLogic.mk_eq
-      (fvbn $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ arg_nos))))
-  end;
-  val (_, (_, _, constrs)) = nth descr ith_dtyp;
-  val eqs = map2i fv_bn_constr constrs args_in_bns
-in
-  ((bn, fvbn), eqs)
-end
-*}
-
-ML {* print_depth 100 *}
-ML {*
-fun fv_bns thy dt_info fv_frees rel_bns =
-let
-  fun mk_fvbn_free (bn, ith, _) =
-    let
-      val fvbn_name = "fv_" ^ (Long_Name.base_name (fst (dest_Const bn)));
-    in
-      (fvbn_name, Free (fvbn_name, fastype_of (nth fv_frees ith)))
-    end;
-  val (fvbn_names, fvbn_frees) = split_list (map mk_fvbn_free rel_bns);
-  val bn_fvbn = (map (fn (bn, _, _) => bn) rel_bns) ~~ fvbn_frees
-  val (l1, l2) = split_list (map (fv_bn thy dt_info fv_frees bn_fvbn) (fvbn_frees ~~ rel_bns));
-in
-  (l1, (fvbn_names ~~ l2))
-end
-*}
-
-
-ML {*
-fun alpha_bn (dt_info : Datatype_Aux.info) alpha_frees bn_alphabn ((bn, ith_dtyp, args_in_bns), (alpha_bn_free, _ (*is_rec*) )) =
-let
-  val {descr, sorts, ...} = dt_info;
-  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
-  fun alpha_bn_constr (cname, dts) args_in_bn =
-  let
-    val Ts = map (typ_of_dtyp descr sorts) dts;
-    val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
-    val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts);
-    val args = map Free (names ~~ Ts);
-    val args2 = map Free (names2 ~~ Ts);
-    val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
-    val rhs = HOLogic.mk_Trueprop
-      (alpha_bn_free $ (list_comb (c, args)) $ (list_comb (c, args2)));
-    fun lhs_arg ((dt, arg_no), (arg, arg2)) =
-      case AList.lookup (op=) args_in_bn arg_no of
-        SOME NONE => @{term True}
-      | SOME (SOME f) => (the (AList.lookup (op=) bn_alphabn f)) $ arg $ arg2
-      | NONE =>
-          if is_rec_type dt then (nth alpha_frees (body_index dt)) $ arg $ arg2
-          else HOLogic.mk_eq (arg, arg2)
-    val arg_nos = 0 upto (length dts - 1)
-    val lhss = mk_conjl (map lhs_arg (dts ~~ arg_nos ~~ (args ~~ args2)))
-    val eq = Logic.mk_implies (HOLogic.mk_Trueprop lhss, rhs)
-  in
-    eq
-  end
-  val (_, (_, _, constrs)) = nth descr ith_dtyp;
-  val eqs = map2i alpha_bn_constr constrs args_in_bns
-in
-  ((bn, alpha_bn_free), eqs)
-end
-*}
-
-ML {*
-fun alpha_bns dt_info alpha_frees rel_bns bns_rec =
-let
-  val {descr, sorts, ...} = dt_info;
-  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
-  fun mk_alphabn_free (bn, ith, _) =
-    let
-      val alphabn_name = "alpha_" ^ (Long_Name.base_name (fst (dest_Const bn)));
-      val alphabn_type = nth_dtyp ith --> nth_dtyp ith --> @{typ bool};
-      val alphabn_free = Free(alphabn_name, alphabn_type);
-    in
-      (alphabn_name, alphabn_free)
-    end;
-  val (alphabn_names, alphabn_frees) = split_list (map mk_alphabn_free rel_bns);
-  val bn_alphabn = (map (fn (bn, _, _) => bn) rel_bns) ~~ alphabn_frees;
-  val pair = split_list (map (alpha_bn dt_info alpha_frees bn_alphabn)
-    (rel_bns ~~ (alphabn_frees ~~ bns_rec)))
-in
-  (alphabn_names, pair)
-end
-*}
-
-
-(* Checks that a list of bindings contains only compatible ones *)
-ML {*
-fun bns_same l =
-  length (distinct (op =) (map (fn ((b, _, _, atyp), _) => (b, atyp)) l)) = 1
-*}
-
-ML {*
-fun setify x =
-  if fastype_of x = @{typ "atom list"} then
-  Const (@{const_name set}, @{typ "atom list \<Rightarrow> atom set"}) $ x else x
-*}
-
-ML {*
-fun define_fv (dt_info : Datatype_Aux.info) bindsall bns lthy =
-let
-  val thy = ProofContext.theory_of lthy;
-  val {descr, sorts, ...} = dt_info;
-  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
-  val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
-    "fv_" ^ name_of_typ (nth_dtyp i)) descr);
-  val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr;
-  val fv_frees = map Free (fv_names ~~ fv_types);
-(* TODO: We need a transitive closure, but instead we do this hack considering
-   all binding functions as recursive or not *)
-  val nr_bns =
-    if (non_rec_binds bindsall) = [] then []
-    else map (fn (bn, _, _) => bn) bns;
-  val rel_bns = filter (fn (bn, _, _) => bn mem nr_bns) bns;
-  val (bn_fv_bns, fv_bn_names_eqs) = fv_bns thy dt_info fv_frees rel_bns;
-  val fvbns = map snd bn_fv_bns;
-  val (fv_bn_names, fv_bn_eqs) = split_list fv_bn_names_eqs;
-
-  fun fv_constr ith_dtyp (cname, dts) bindcs =
-    let
-      val Ts = map (typ_of_dtyp descr sorts) dts;
-      val bindslen = length bindcs
-      val pi_strs_same = replicate bindslen "pi"
-      val pi_strs = Name.variant_list [] pi_strs_same;
-      val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
-      val bind_pis_gath = bindcs ~~ pis;
-      val bind_pis = un_gather_binds_cons bind_pis_gath;
-      val bindcs = map fst bind_pis;
-      val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
-      val args = map Free (names ~~ Ts);
-      val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
-      val fv_c = nth fv_frees ith_dtyp;
-      val arg_nos = 0 upto (length dts - 1)
-      fun fv_bind args (NONE, i, _, _) =
-            if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
-            if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
-            if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
-            if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
-            (* TODO goes the code for preiously defined nominal datatypes *)
-            @{term "{} :: atom set"}
-        | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
-      fun fv_binds_as_set args relevant = mk_union (map (setify o fv_bind args) relevant)
-      fun find_nonrec_binder j (SOME (f, false), i, _, _) = if i = j then SOME f else NONE
-        | find_nonrec_binder _ _ = NONE
-      fun fv_arg ((dt, x), arg_no) =
-        case get_first (find_nonrec_binder arg_no) bindcs of
-          SOME f =>
-            (case get_first (fn (x, y) => if x = f then SOME y else NONE) bn_fv_bns of
-                SOME fv_bn => fv_bn $ x
-              | NONE => error "bn specified in a non-rec binding but not in bn list")
-        | NONE =>
-            let
-              val arg =
-                if is_rec_type dt then nth fv_frees (body_index dt) $ x else
-                if ((is_atom thy) o fastype_of) x then mk_single_atom x else
-                if ((is_atom_set thy) o fastype_of) x then mk_atom_set x else
-                if ((is_atom_fset thy) o fastype_of) x then mk_atom_fset x else
-                (* TODO goes the code for preiously defined nominal datatypes *)
-                @{term "{} :: atom set"};
-              (* If i = j then we generate it only once *)
-              val relevant = filter (fn (_, i, j, _) => ((i = arg_no) orelse (j = arg_no))) bindcs;
-              val sub = fv_binds_as_set args relevant
-            in
-              mk_diff arg sub
-            end;
-      val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq
-        (fv_c $ list_comb (c, args), mk_union (map fv_arg  (dts ~~ args ~~ arg_nos))))
-    in
-      fv_eq
-    end;
-  fun fv_eq (i, (_, _, constrs)) binds = map2i (fv_constr i) constrs binds;
-  val fveqs = map2i fv_eq descr (gather_binds bindsall)
-  val fv_eqs_perfv = fveqs
-  val rel_bns_nos = map (fn (_, i, _) => i) rel_bns;
-  fun filter_fun (_, b) = b mem rel_bns_nos;
-  val all_fvs = (fv_names ~~ fv_eqs_perfv) ~~ (0 upto (length fv_names - 1))
-  val (fv_names_fst, fv_eqs_fst) = apsnd flat (split_list (map fst (filter_out filter_fun all_fvs)))
-  val (fv_names_snd, fv_eqs_snd) = apsnd flat (split_list (map fst (filter filter_fun all_fvs)))
-  val fv_eqs_all = fv_eqs_fst @ (flat fv_bn_eqs);
-  val fv_names_all = fv_names_fst @ fv_bn_names;
-  val add_binds = map (fn x => (Attrib.empty_binding, x))
-(* Function_Fun.add_fun Function_Common.default_config ... true *)
-  val (fvs, lthy') = (Primrec.add_primrec
-    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_all) (add_binds fv_eqs_all) lthy)
-  val (fvs2, lthy'') =
-    if fv_eqs_snd = [] then (([], []), lthy') else
-   (Primrec.add_primrec
-    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_snd) (add_binds fv_eqs_snd) lthy')
-  val ordered_fvs = fv_frees @ fvbns;
-  val all_fvs = (fst fvs @ fst fvs2, snd fvs @ snd fvs2)
-in
-  ((all_fvs, ordered_fvs), lthy'')
-end
-*}
-
-ML {*
-fun define_alpha (dt_info : Datatype_Aux.info) bindsall bns fv_frees lthy =
-let
-  val thy = ProofContext.theory_of lthy;
-  val {descr, sorts, ...} = dt_info;
-  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
-(* TODO: We need a transitive closure, but instead we do this hack considering
-   all binding functions as recursive or not *)
-  val nr_bns =
-    if (non_rec_binds bindsall) = [] then []
-    else map (fn (bn, _, _) => bn) bns;
-  val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
-    "alpha_" ^ name_of_typ (nth_dtyp i)) descr);
-  val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr;
-  val alpha_frees = map Free (alpha_names ~~ alpha_types);
-  (* We assume that a bn is either recursive or not *)
-  val bns_rec = map (fn (bn, _, _) => not (bn mem nr_bns)) bns;
-  val (alpha_bn_names, (bn_alpha_bns, alpha_bn_eqs)) =
-    alpha_bns dt_info alpha_frees bns bns_rec
-  val alpha_bn_frees = map snd bn_alpha_bns;
-  val alpha_bn_types = map fastype_of alpha_bn_frees;
-
-  fun alpha_constr ith_dtyp (cname, dts) bindcs =
-    let
-      val Ts = map (typ_of_dtyp descr sorts) dts;
-      val bindslen = length bindcs
-      val pi_strs_same = replicate bindslen "pi"
-      val pi_strs = Name.variant_list [] pi_strs_same;
-      val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
-      val bind_pis_gath = bindcs ~~ pis;
-      val bind_pis = un_gather_binds_cons bind_pis_gath;
-      val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
-      val args = map Free (names ~~ Ts);
-      val names2 = Name.variant_list (pi_strs @ names) (Datatype_Prop.make_tnames Ts);
-      val args2 = map Free (names2 ~~ Ts);
-      val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
-      val alpha = nth alpha_frees ith_dtyp;
-      val arg_nos = 0 upto (length dts - 1)
-      fun fv_bind args (NONE, i, _, _) =
-            if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
-            if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
-            if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
-            if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
-            (* TODO goes the code for preiously defined nominal datatypes *)
-            @{term "{} :: atom set"}
-        | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
-      fun fv_binds args relevant = mk_union (map (fv_bind args) relevant)
-      val alpha_rhs =
-        HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2)));
-      fun alpha_arg ((dt, arg_no), (arg, arg2)) =
-        let
-          val rel_in_simp_binds = filter (fn ((NONE, i, _, _), _) => i = arg_no | _ => false) bind_pis;
-          val rel_in_comp_binds = filter (fn ((SOME _, i, _, _), _) => i = arg_no | _ => false) bind_pis;
-          val rel_has_binds = filter (fn ((NONE, _, j, _), _) => j = arg_no
-                                       | ((SOME (_, false), _, j, _), _) => j = arg_no
-                                       | _ => false) bind_pis;
-          val rel_has_rec_binds = filter
-            (fn ((SOME (_, true), _, j, _), _) => j = arg_no | _ => false) bind_pis;
-        in
-          case (rel_in_simp_binds, rel_in_comp_binds, rel_has_binds, rel_has_rec_binds) of
-            ([], [], [], []) =>
-              if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2)
-              else (HOLogic.mk_eq (arg, arg2))
-          | (_, [], [], []) => @{term True}
-          | ([], [], [], _) => @{term True}
-          | ([], ((((SOME (bn, is_rec)), _, _, atyp), _) :: _), [], []) =>
-            if not (bns_same rel_in_comp_binds) then error "incompatible bindings for an argument" else
-            if is_rec then
-              let
-                val (rbinds, rpis) = split_list rel_in_comp_binds
-                val bound_in_nos = map (fn (_, _, i, _) => i) rbinds
-                val bound_in_ty_nos = map (fn i => body_index (nth dts i)) bound_in_nos;
-                val bound_args = arg :: map (nth args) bound_in_nos;
-                val bound_args2 = arg2 :: map (nth args2) bound_in_nos;
-                val lhs_binds = fv_binds args rbinds
-                val lhs_arg = foldr1 HOLogic.mk_prod bound_args
-                val lhs = mk_pair (lhs_binds, lhs_arg);
-                val rhs_binds = fv_binds args2 rbinds;
-                val rhs_arg = foldr1 HOLogic.mk_prod bound_args2;
-                val rhs = mk_pair (rhs_binds, rhs_arg);
-                val fvs = map (nth fv_frees) ((body_index dt) :: bound_in_ty_nos);
-                val fv = mk_compound_fv fvs;
-                val alphas = map (nth alpha_frees) ((body_index dt) :: bound_in_ty_nos);
-                val alpha = mk_compound_alpha alphas;
-                val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis);
-                val alpha_gen_pre = Const (atyp_const atyp, dummyT) $ lhs $ alpha $ fv $ pi $ rhs;
-                val alpha_gen = Syntax.check_term lthy alpha_gen_pre
-              in
-                alpha_gen
-              end
-            else
-              let
-                val alpha_bn_const =
-                  nth alpha_bn_frees (find_index (fn (b, _, _) => b = bn) bns)
-              in
-                alpha_bn_const $ arg $ arg2
-              end
-          | ([], [], relevant, []) =>
-            let
-              val (rbinds, rpis) = split_list relevant
-              val lhs_binds = fv_binds args rbinds
-              val lhs = mk_pair (lhs_binds, arg);
-              val rhs_binds = fv_binds args2 rbinds;
-              val rhs = mk_pair (rhs_binds, arg2);
-              val alpha = nth alpha_frees (body_index dt);
-              val fv = nth fv_frees (body_index dt);
-              val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis);
-              val alpha_const = alpha_const_for_binds rbinds;
-              val alpha_gen_pre = Const (alpha_const, dummyT) $ lhs $ alpha $ fv $ pi $ rhs;
-              val alpha_gen = Syntax.check_term lthy alpha_gen_pre
-            in
-              alpha_gen
-            end
-          | _ => error "Fv.alpha: not supported binding structure"
-        end
-      val alphas = map alpha_arg (dts ~~ arg_nos ~~ (args ~~ args2))
-      val alpha_lhss = mk_conjl alphas
-      val alpha_lhss_ex =
-        fold (fn pi_str => fn t => HOLogic.mk_exists (pi_str, @{typ perm}, t)) pi_strs alpha_lhss
-      val alpha_eq = Logic.mk_implies (HOLogic.mk_Trueprop alpha_lhss_ex, alpha_rhs)
-    in
-      alpha_eq
-    end;
-  fun alpha_eq (i, (_, _, constrs)) binds = map2i (alpha_constr i) constrs binds;
-  val alphaeqs = map2i alpha_eq descr (gather_binds bindsall)
-  val alpha_eqs = flat alphaeqs
-  val add_binds = map (fn x => (Attrib.empty_binding, x))
-  val (alphas, lthy') = (Inductive.add_inductive_i
-     {quiet_mode = true, verbose = false, alt_name = Binding.empty,
-      coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
-     (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) (alpha_names @ alpha_bn_names)
-     (alpha_types @ alpha_bn_types)) []
-     (add_binds (alpha_eqs @ flat alpha_bn_eqs)) [] lthy)
-in
-  (alphas, lthy')
-end
-*}
-
-end
--- a/Nominal/Lift.thy	Sat May 01 09:15:46 2010 +0100
+++ b/Nominal/Lift.thy	Sun May 02 14:06:26 2010 +0100
@@ -2,7 +2,7 @@
 imports "../Nominal-General/Nominal2_Atoms" 
         "../Nominal-General/Nominal2_Eqvt" 
         "../Nominal-General/Nominal2_Supp" 
-        "Abs" "Perm" "Equivp" "Rsp"
+        "Abs" "Perm" "Equivp" "Rsp" "Attic/Fv"
 begin
 
 
@@ -66,6 +66,9 @@
 end
 *}
 
+
+
+
 ML {*
 fun define_fv_alpha_export dt binds bns ctxt =
 let
--- a/Nominal/NewParser.thy	Sat May 01 09:15:46 2010 +0100
+++ b/Nominal/NewParser.thy	Sun May 02 14:06:26 2010 +0100
@@ -258,9 +258,78 @@
 end
 *}
 
+
+text {* 
+  nominal_datatype2 does the following things in order:
+
+Parser.thy/raw_nominal_decls
+  1) define the raw datatype
+  2) define the raw binding functions 
+
+Perm.thy/define_raw_perms
+  3) define permutations of the raw datatype and show that the raw type is 
+     in the pt typeclass
+      
+Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha
+  4) define fv and fv_bn
+  5) define alpha and alpha_bn
+
+Perm.thy/distinct_rel
+  6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...)             (Proof by cases; simp)
+
+Tacs.thy/build_rel_inj
+  6) prove alpha_eq_iff    (C1 x = C2 y \<leftrightarrow> P x y ...)
+     (left-to-right by intro rule, right-to-left by cases; simp)
+Equivp.thy/prove_eqvt
+  7) prove bn_eqvt (common induction on the raw datatype)
+  8) prove fv_eqvt (common induction on the raw datatype with help of above)
+Rsp.thy/build_alpha_eqvts
+  9) prove alpha_eqvt and alpha_bn_eqvt
+     (common alpha-induction, unfolding alpha_gen, permute of #* and =)
+Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps
+ 10) prove that alpha and alpha_bn are equivalence relations
+     (common induction and application of 'compose' lemmas)
+Lift.thy/define_quotient_types
+ 11) define quotient types
+Rsp.thy/build_fvbv_rsps
+ 12) prove bn respects     (common induction and simp with alpha_gen)
+Rsp.thy/prove_const_rsp
+ 13) prove fv respects     (common induction and simp with alpha_gen)
+ 14) prove permute respects    (unfolds to alpha_eqvt)
+Rsp.thy/prove_alpha_bn_rsp
+ 15) prove alpha_bn respects
+     (alpha_induct then cases then sym and trans of the relations)
+Rsp.thy/prove_alpha_alphabn
+ 16) show that alpha implies alpha_bn (by unduction, needed in following step)
+Rsp.thy/prove_const_rsp
+ 17) prove respects for all datatype constructors
+     (unfold eq_iff and alpha_gen; introduce zero permutations; simp)
+Perm.thy/quotient_lift_consts_export
+ 18) define lifted constructors, fv, bn, alpha_bn, permutations
+Perm.thy/define_lifted_perms
+ 19) lift permutation zero and add properties to show that quotient type is in the pt typeclass
+Lift.thy/lift_thm
+ 20) lift permutation simplifications
+ 21) lift induction
+ 22) lift fv
+ 23) lift bn
+ 24) lift eq_iff
+ 25) lift alpha_distincts
+ 26) lift fv and bn eqvts
+Equivp.thy/prove_supports
+ 27) prove that union of arguments supports constructors
+Equivp.thy/prove_fs
+ 28) show that the lifted type is in fs typeclass     (* by q_induct, supports *)
+Equivp.thy/supp_eq
+ 29) prove supp = fv
+*}
+
+
 ML {*
 fun nominal_datatype2 dts bn_funs bn_eqs bclauses lthy =
 let
+
+  (* definition of the raw datatype and raw bn-functions *)
   val ((((raw_dt_names, (raw_bn_funs_loc, raw_bn_eqs_loc)), raw_bclauses), raw_bns), lthy1) =
     raw_nominal_decls dts bn_funs bn_eqs bclauses lthy
 
@@ -279,6 +348,7 @@
   val induct = #induct dtinfo;
   val exhausts = map #exhaust dtinfos;
 
+  (* definitions of raw permutations *)
   val ((raw_perm_def, raw_perm_simps, perms), lthy2) =
     Local_Theory.theory_result (define_raw_perms dtinfo (length dts)) lthy1;
 
@@ -579,6 +649,8 @@
   (main_parser >> nominal_datatype2_cmd)
 *}
 
+
+(*
 atom_decl name
 
 nominal_datatype lam =
@@ -658,21 +730,24 @@
 
 thm ty_tys.fv[simplified ty_tys.supp]
 thm ty_tys.eq_iff
+*)
+
 
 (* some further tests *)
 
-nominal_datatype ty =
-  Vr "name"
-| Fn "ty" "ty"
+(*
+nominal_datatype ty2 =
+  Vr2 "name"
+| Fn2 "ty2" "ty2"
 
-nominal_datatype tys =
-  All xs::"name fset" ty::"ty_raw" bind_res xs in ty
+nominal_datatype tys2 =
+  All2 xs::"name fset" ty::"ty2" bind_res xs in ty
 
 nominal_datatype lam2 =
   Var2 "name"
 | App2 "lam2" "lam2 list"
 | Lam2 x::"name" t::"lam2" bind x in t
-
+*)
 
 
 
--- a/Nominal/Parser.thy	Sat May 01 09:15:46 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,670 +0,0 @@
-theory Parser
-imports "../Nominal-General/Nominal2_Atoms" 
-        "../Nominal-General/Nominal2_Eqvt" 
-        "../Nominal-General/Nominal2_Supp" 
-        "Perm" "Equivp" "Rsp" "Lift"
-begin
-
-section{* Interface for nominal_datatype *}
-
-text {*
-
-Nominal-Datatype-part:
-
-
-1nd Arg: (string list * binding * mixfix * (binding * typ list * mixfix) list) list
-         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^   ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-               type(s) to be defined             constructors list
-               (ty args, name, syn)              (name, typs, syn)
-
-Binder-Function-part:
-
-2rd Arg: (binding * typ option * mixfix) list 
-         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^    
-            binding function(s)           
-              to be defined               
-            (name, type, syn)             
-
-3th Arg:  term list 
-          ^^^^^^^^^
-          the equations of the binding functions
-          (Trueprop equations)
-*}
-
-ML {*
-
-*}
-
-text {*****************************************************}
-ML {* 
-(* nominal datatype parser *)
-local
-  structure P = OuterParse
-
-  fun tuple ((x, y, z), u) = (x, y, z, u)
-  fun tswap (((x, y), z), u) = (x, y, u, z)
-in
-
-val _ = OuterKeyword.keyword "bind"
-val anno_typ = Scan.option (P.name --| P.$$$ "::") -- P.typ
-
-(* binding specification *)
-(* maybe use and_list *)
-val bind_parser = 
-  P.enum "," ((P.$$$ "bind" |-- P.term) -- (P.$$$ "in" |-- P.name) >> swap)
-
-val constr_parser =
-  P.binding -- Scan.repeat anno_typ
-
-(* datatype parser *)
-val dt_parser =
-  (P.type_args -- P.binding -- P.opt_mixfix >> P.triple1) -- 
-    (P.$$$ "=" |-- P.enum1 "|" (constr_parser -- bind_parser -- P.opt_mixfix >> tswap)) >> tuple
-
-(* function equation parser *)
-val fun_parser = 
-  Scan.optional (P.$$$ "binder" |-- P.fixes -- SpecParse.where_alt_specs) ([],[])
-
-(* main parser *)
-val main_parser =
-  (P.and_list1 dt_parser) -- fun_parser >> P.triple2
-
-end
-*}
-
-(* adds "_raw" to the end of constants and types *)
-ML {*
-fun add_raw s = s ^ "_raw"
-fun add_raws ss = map add_raw ss
-fun raw_bind bn = Binding.suffix_name "_raw" bn
-
-fun replace_str ss s = 
-  case (AList.lookup (op=) ss s) of 
-     SOME s' => s'
-   | NONE => s
-
-fun replace_typ ty_ss (Type (a, Ts)) = Type (replace_str ty_ss a, map (replace_typ ty_ss) Ts)
-  | replace_typ ty_ss T = T  
-
-fun raw_dts ty_ss dts =
-let
-
-  fun raw_dts_aux1 (bind, tys, mx) =
-    (raw_bind bind, map (replace_typ ty_ss) tys, mx)
-
-  fun raw_dts_aux2 (ty_args, bind, mx, constrs) =
-    (ty_args, raw_bind bind, mx, map raw_dts_aux1 constrs)
-in
-  map raw_dts_aux2 dts
-end
-
-fun replace_aterm trm_ss (Const (a, T)) = Const (replace_str trm_ss a, T)
-  | replace_aterm trm_ss (Free (a, T)) = Free (replace_str trm_ss a, T)
-  | replace_aterm trm_ss trm = trm
-
-fun replace_term trm_ss ty_ss trm =
-  trm |> Term.map_aterms (replace_aterm trm_ss) |> map_types (replace_typ ty_ss) 
-*}
-
-ML {*
-fun get_cnstrs dts =
-  map (fn (_, _, _, constrs) => constrs) dts
-
-fun get_typed_cnstrs dts =
-  flat (map (fn (_, bn, _, constrs) => 
-   (map (fn (bn', _, _) => (Binding.name_of bn, Binding.name_of bn')) constrs)) dts)
-
-fun get_cnstr_strs dts =
-  map (fn (bn, _, _) => Binding.name_of bn) (flat (get_cnstrs dts))
-
-fun get_bn_fun_strs bn_funs =
-  map (fn (bn_fun, _, _) => Binding.name_of bn_fun) bn_funs
-*}
-
-ML {*
-fun rawify_dts dt_names dts dts_env =
-let
-  val raw_dts = raw_dts dts_env dts
-  val raw_dt_names = add_raws dt_names
-in
-  (raw_dt_names, raw_dts)
-end 
-*}
-
-ML {*
-fun rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs =
-let
-  val bn_funs' = map (fn (bn, ty, mx) => 
-    (raw_bind bn, replace_typ dts_env ty, mx)) bn_funs
-  
-  val bn_eqs' = map (fn (attr, trm) => 
-    (attr, replace_term (cnstrs_env @ bn_fun_env) dts_env trm)) bn_eqs
-in
-  (bn_funs', bn_eqs') 
-end 
-*}
-
-ML {*
-fun apfst3 f (a, b, c) = (f a, b, c)
-*}
-
-ML {* 
-fun rawify_binds dts_env cnstrs_env bn_fun_env binds =
-  map (map (map (map (fn (opt_trm, i, j, aty) => 
-    (Option.map (apfst (replace_term (cnstrs_env @ bn_fun_env) dts_env)) opt_trm, i, j, aty))))) binds
-*}
-
-ML {*
-fun find [] _ = error ("cannot find element")
-  | find ((x, z)::xs) y = if (Long_Name.base_name x) = y then z else find xs y
-*}
-
-ML {*
-fun strip_bn_fun t =
-  case t of
-    Const (@{const_name sup}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r
-  | Const (@{const_name append}, _) $ l $ r => strip_bn_fun l @ strip_bn_fun r
-  | Const (@{const_name insert}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y =>
-      (i, NONE) :: strip_bn_fun y
-  | Const (@{const_name Cons}, _) $ (Const (@{const_name atom}, _) $ Bound i) $ y =>
-      (i, NONE) :: strip_bn_fun y
-  | Const (@{const_name bot}, _) => []
-  | Const (@{const_name Nil}, _) => []
-  | (f as Free _) $ Bound i => [(i, SOME f)]
-  | _ => error ("Unsupported binding function: " ^ (PolyML.makestring t))
-*}
-
-ML {*
-fun prep_bn dt_names dts eqs = 
-let
-  fun aux eq = 
-  let
-    val (lhs, rhs) = eq
-      |> strip_qnt_body "all" 
-      |> HOLogic.dest_Trueprop
-      |> HOLogic.dest_eq
-    val (bn_fun, [cnstr]) = strip_comb lhs
-    val (_, ty) = dest_Free bn_fun
-    val (ty_name, _) = dest_Type (domain_type ty)
-    val dt_index = find_index (fn x => x = ty_name) dt_names
-    val (cnstr_head, cnstr_args) = strip_comb cnstr
-    val rhs_elements = strip_bn_fun rhs
-    val included = map (apfst (fn i => length (cnstr_args) - i - 1)) rhs_elements
-  in
-    (dt_index, (bn_fun, (cnstr_head, included)))
-  end 
-  fun order dts i ts = 
-  let
-    val dt = nth dts i
-    val cts = map (fn (x, _, _) => Binding.name_of x) ((fn (_, _, _, x) => x) dt)
-    val ts' = map (fn (x, y) => (fst (dest_Const x), y)) ts
-  in
-    map (find ts') cts
-  end
-
-  val unordered = AList.group (op=) (map aux eqs)
-  val unordered' = map (fn (x, y) =>  (x, AList.group (op=) y)) unordered
-  val ordered = map (fn (x, y) => (x, map (fn (v, z) => (v, order dts x z)) y)) unordered' 
-in
-  ordered
-end
-*}
-
-ML {* 
-fun add_primrec_wrapper funs eqs lthy = 
-  if null funs then (([], []), lthy)
-  else 
-   let 
-     val eqs' = map (fn (_, eq) => (Attrib.empty_binding, eq)) eqs
-     val funs' = map (fn (bn, ty, mx) => (bn, SOME ty, mx)) funs
-   in 
-     Primrec.add_primrec funs' eqs' lthy
-   end
-*}
-
-ML {*
-fun add_datatype_wrapper dt_names dts =
-let
-  val conf = Datatype.default_config
-in
-  Local_Theory.theory_result (Datatype.add_datatype conf dt_names dts)
-end
-*}
-
-ML {* 
-fun raw_nominal_decls dts bn_funs bn_eqs binds lthy =
-let
-  val thy = ProofContext.theory_of lthy
-  val thy_name = Context.theory_name thy
-
-  val dt_names = map (fn (_, s, _, _) => Binding.name_of s) dts
-  val dt_full_names = map (Long_Name.qualify thy_name) dt_names 
-  val dt_full_names' = add_raws dt_full_names
-  val dts_env = dt_full_names ~~ dt_full_names'
-
-  val cnstrs = get_cnstr_strs dts
-  val cnstrs_ty = get_typed_cnstrs dts
-  val cnstrs_full_names = map (Long_Name.qualify thy_name) cnstrs
-  val cnstrs_full_names' = map (fn (x, y) => Long_Name.qualify thy_name 
-    (Long_Name.qualify (add_raw x) (add_raw y))) cnstrs_ty
-  val cnstrs_env = cnstrs_full_names ~~ cnstrs_full_names'
-
-  val bn_fun_strs = get_bn_fun_strs bn_funs
-  val bn_fun_strs' = add_raws bn_fun_strs
-  val bn_fun_env = bn_fun_strs ~~ bn_fun_strs'
-  val bn_fun_full_env = map (pairself (Long_Name.qualify thy_name)) 
-    (bn_fun_strs ~~ bn_fun_strs')
-  
-  val (raw_dt_names, raw_dts) = rawify_dts dt_names dts dts_env
-
-  val (raw_bn_funs, raw_bn_eqs) = rawify_bn_funs dts_env cnstrs_env bn_fun_env bn_funs bn_eqs 
-  
-  val raw_binds = rawify_binds dts_env cnstrs_env bn_fun_full_env binds 
-
-  val raw_bns = prep_bn dt_full_names' raw_dts (map snd raw_bn_eqs)
-
-(*val _ = tracing (cat_lines (map PolyML.makestring raw_bns))*)
-in
-  lthy 
-  |> add_datatype_wrapper raw_dt_names raw_dts 
-  ||>> add_primrec_wrapper raw_bn_funs raw_bn_eqs
-  ||>> pair raw_binds
-  ||>> pair raw_bns
-end
-*}
-
-lemma equivp_hack: "equivp x"
-sorry
-ML {*
-fun equivp_hack ctxt rel =
-let
-  val thy = ProofContext.theory_of ctxt
-  val ty = domain_type (fastype_of rel)
-  val cty = ctyp_of thy ty
-  val ct = cterm_of thy rel
-in
-  Drule.instantiate' [SOME cty] [SOME ct] @{thm equivp_hack}
-end
-*}
-
-ML {* val cheat_alpha_eqvt = Unsynchronized.ref false *}
-ML {* val cheat_equivp = Unsynchronized.ref false *}
-ML {* val cheat_fv_rsp = Unsynchronized.ref false *}
-ML {* val cheat_const_rsp = Unsynchronized.ref false *}
-
-(* nominal_datatype2 does the following things in order:
-
-Parser.thy/raw_nominal_decls
-  1) define the raw datatype
-  2) define the raw binding functions 
-
-Perm.thy/define_raw_perms
-  3) define permutations of the raw datatype and show that the raw type is 
-     in the pt typeclass
-      
-Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha
-  4) define fv and fv_bn
-  5) define alpha and alpha_bn
-
-Perm.thy/distinct_rel
-  6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...)             (Proof by cases; simp)
-
-Tacs.thy/build_rel_inj
-  6) prove alpha_eq_iff    (C1 x = C2 y \<leftrightarrow> P x y ...)
-     (left-to-right by intro rule, right-to-left by cases; simp)
-Equivp.thy/prove_eqvt
-  7) prove bn_eqvt (common induction on the raw datatype)
-  8) prove fv_eqvt (common induction on the raw datatype with help of above)
-Rsp.thy/build_alpha_eqvts
-  9) prove alpha_eqvt and alpha_bn_eqvt
-     (common alpha-induction, unfolding alpha_gen, permute of #* and =)
-Equivp.thy/build_alpha_refl & Equivp.thy/build_equivps
- 10) prove that alpha and alpha_bn are equivalence relations
-     (common induction and application of 'compose' lemmas)
-Lift.thy/define_quotient_types
- 11) define quotient types
-Rsp.thy/build_fvbv_rsps
- 12) prove bn respects     (common induction and simp with alpha_gen)
-Rsp.thy/prove_const_rsp
- 13) prove fv respects     (common induction and simp with alpha_gen)
- 14) prove permute respects    (unfolds to alpha_eqvt)
-Rsp.thy/prove_alpha_bn_rsp
- 15) prove alpha_bn respects
-     (alpha_induct then cases then sym and trans of the relations)
-Rsp.thy/prove_alpha_alphabn
- 16) show that alpha implies alpha_bn (by unduction, needed in following step)
-Rsp.thy/prove_const_rsp
- 17) prove respects for all datatype constructors
-     (unfold eq_iff and alpha_gen; introduce zero permutations; simp)
-Perm.thy/quotient_lift_consts_export
- 18) define lifted constructors, fv, bn, alpha_bn, permutations
-Perm.thy/define_lifted_perms
- 19) lift permutation zero and add properties to show that quotient type is in the pt typeclass
-Lift.thy/lift_thm
- 20) lift permutation simplifications
- 21) lift induction
- 22) lift fv
- 23) lift bn
- 24) lift eq_iff
- 25) lift alpha_distincts
- 26) lift fv and bn eqvts
-Equivp.thy/prove_supports
- 27) prove that union of arguments supports constructors
-Equivp.thy/prove_fs
- 28) show that the lifted type is in fs typeclass     (* by q_induct, supports *)
-Equivp.thy/supp_eq
- 29) prove supp = fv
-*)
-ML {*
-fun nominal_datatype2 dts bn_funs bn_eqs binds lthy =
-let
-  val _ = tracing "Raw declarations";
-  val thy = ProofContext.theory_of lthy
-  val thy_name = Context.theory_name thy
-  val ((((raw_dt_names, (raw_bn_funs_loc, raw_bn_eqs_loc)), raw_binds), raw_bns), lthy2) =
-    raw_nominal_decls dts bn_funs bn_eqs binds lthy
-  val morphism_2_1 = ProofContext.export_morphism lthy2 lthy
-  fun export_fun f (t, l) = (f t, map (map (apsnd (Option.map f))) l);
-  val raw_bns_exp = map (apsnd (map (export_fun (Morphism.term morphism_2_1)))) raw_bns;
-  val bn_funs_decls = flat (map (fn (ith, l) => map (fn (bn, data) => (bn, ith, data)) l) raw_bns_exp);
-  val raw_bn_funs = map (Morphism.term morphism_2_1) raw_bn_funs_loc
-  val raw_bn_eqs = ProofContext.export lthy2 lthy raw_bn_eqs_loc
-
-  val dtinfo = Datatype.the_info (ProofContext.theory_of lthy2) (hd raw_dt_names);
-  val {descr, sorts, ...} = dtinfo;
-  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
-  val raw_tys = map (fn (i, _) => nth_dtyp i) descr;
-  val all_typs = map (fn i => typ_of_dtyp descr sorts (DtRec i)) (map fst descr)
-  val all_full_tnames = map (fn (_, (n, _, _)) => n) descr;
-  val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy2)) all_full_tnames;
-  val rel_dtinfos = List.take (dtinfos, (length dts));
-  val inject = flat (map #inject dtinfos);
-  val distincts = flat (map #distinct dtinfos);
-  val rel_distinct = map #distinct rel_dtinfos;
-  val induct = #induct dtinfo;
-  val exhausts = map #exhaust dtinfos;
-  val _ = tracing "Defining permutations, fv and alpha";
-  val ((raw_perm_def, raw_perm_simps, perms), lthy3) =
-    Local_Theory.theory_result (define_raw_perms dtinfo (length dts)) lthy2;
-  val raw_binds_flat = map (map flat) raw_binds;
-  val ((((_, fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), lthy4) =
-    define_fv_alpha_export dtinfo raw_binds_flat bn_funs_decls lthy3;
-  val (fv, fvbn) = chop (length perms) fv_ts;
-
-  val (alpha_ts_nobn, alpha_ts_bn) = chop (length fv) alpha_ts
-  val dts_names = map (fn (i, (s, _, _)) => (s, i)) (#descr dtinfo);
-  val bn_tys = map (domain_type o fastype_of) raw_bn_funs;
-  val bn_nos = map (dtyp_no_of_typ dts_names) bn_tys;
-  val bns = raw_bn_funs ~~ bn_nos;
-  val rel_dists = flat (map (distinct_rel lthy4 alpha_cases)
-    (rel_distinct ~~ alpha_ts_nobn));
-  val rel_dists_bn = flat (map (distinct_rel lthy4 alpha_cases)
-    ((map (fn i => nth rel_distinct i) bn_nos) ~~ alpha_ts_bn))
-  val alpha_eq_iff = build_rel_inj alpha_intros (inject @ distincts) alpha_cases lthy4
-  val _ = tracing "Proving equivariance";
-  val (bv_eqvt, lthy5) = prove_eqvt raw_tys induct (raw_bn_eqs @ raw_perm_def) (map fst bns) lthy4
-  val (fv_eqvt, lthy6) = prove_eqvt raw_tys induct (fv_def @ raw_perm_def) (fv @ fvbn) lthy5
-  fun alpha_eqvt_tac' _ =
-    if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy
-    else alpha_eqvt_tac alpha_induct (raw_perm_def @ alpha_eq_iff) lthy6 1
-  val alpha_eqvt = build_alpha_eqvts alpha_ts alpha_eqvt_tac' lthy6;
-  val _ = tracing "Proving equivalence";
-  val fv_alpha_all = combine_fv_alpha_bns (fv, fvbn) (alpha_ts_nobn, alpha_ts_bn) bn_nos;
-  val reflps = build_alpha_refl fv_alpha_all alpha_ts induct alpha_eq_iff lthy6;
-  val alpha_equivp =
-    if !cheat_equivp then map (equivp_hack lthy6) alpha_ts_nobn
-    else build_equivps alpha_ts reflps alpha_induct
-      inject alpha_eq_iff distincts alpha_cases alpha_eqvt lthy6;
-  val qty_binds = map (fn (_, b, _, _) => b) dts;
-  val qty_names = map Name.of_binding qty_binds;
-  val qty_full_names = map (Long_Name.qualify thy_name) qty_names
-  val (qtys, lthy7) = define_quotient_types qty_binds all_typs alpha_ts_nobn alpha_equivp lthy6;
-  val const_names = map Name.of_binding (flat (map (fn (_, _, _, t) => map (fn (b, _, _) => b) t) dts));
-  val raw_consts =
-    flat (map (fn (i, (_, _, l)) =>
-      map (fn (cname, dts) =>
-        Const (cname, map (typ_of_dtyp descr sorts) dts --->
-          typ_of_dtyp descr sorts (DtRec i))) l) descr);
-  val (consts, const_defs, lthy8) = quotient_lift_consts_export qtys (const_names ~~ raw_consts) lthy7;
-  val _ = tracing "Proving respects";
-  val bns_rsp_pre' = build_fvbv_rsps alpha_ts alpha_induct raw_bn_eqs (map fst bns) lthy8;
-  val (bns_rsp_pre, lthy9) = fold_map (
-    fn (bn_t, _) => prove_const_rsp qtys Binding.empty [bn_t] (fn _ =>
-       resolve_tac bns_rsp_pre' 1)) bns lthy8;
-  val bns_rsp = flat (map snd bns_rsp_pre);
-  fun fv_rsp_tac _ = if !cheat_fv_rsp then Skip_Proof.cheat_tac thy
-    else fvbv_rsp_tac alpha_induct fv_def lthy8 1;
-  val fv_rsps = prove_fv_rsp fv_alpha_all alpha_ts fv_rsp_tac lthy9;
-  val (fv_rsp_pre, lthy10) = fold_map
-    (fn fv => fn ctxt => prove_const_rsp qtys Binding.empty [fv]
-    (fn _ => asm_simp_tac (HOL_ss addsimps fv_rsps) 1) ctxt) (fv @ fvbn) lthy9;
-  val fv_rsp = flat (map snd fv_rsp_pre);
-  val (perms_rsp, lthy11) = prove_const_rsp qtys Binding.empty perms
-    (fn _ => asm_simp_tac (HOL_ss addsimps alpha_eqvt) 1) lthy10;
-  val alpha_bn_rsp_pre = prove_alpha_bn_rsp alpha_ts alpha_induct (alpha_eq_iff @ rel_dists @ rel_dists_bn) alpha_equivp exhausts alpha_ts_bn lthy11;
-  val (alpha_bn_rsps, lthy11a) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
-        (fn _ => asm_simp_tac (HOL_ss addsimps alpha_bn_rsp_pre) 1)) alpha_ts_bn lthy11
-(*  val _ = map tracing (map PolyML.makestring alpha_bn_rsps);*)
-  fun const_rsp_tac _ =
-    if !cheat_const_rsp then Skip_Proof.cheat_tac thy
-    else let val alpha_alphabn = prove_alpha_alphabn alpha_ts alpha_induct alpha_eq_iff alpha_ts_bn lthy11a
-      in constr_rsp_tac alpha_eq_iff (fv_rsp @ bns_rsp @ reflps @ alpha_alphabn) 1 end
-  val (const_rsps, lthy12) = fold_map (fn cnst => prove_const_rsp qtys Binding.empty [cnst]
-    const_rsp_tac) raw_consts lthy11a
-  val qfv_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) (fv @ fvbn)
-  val (qfv_ts, qfv_defs, lthy12a) = quotient_lift_consts_export qtys (qfv_names ~~ (fv @ fvbn)) lthy12;
-  val (qfv_ts_nobn, qfv_ts_bn) = chop (length perms) qfv_ts;
-  val qbn_names = map (fn (b, _ , _) => Name.of_binding b) bn_funs
-  val (qbn_ts, qbn_defs, lthy12b) = quotient_lift_consts_export qtys (qbn_names ~~ raw_bn_funs) lthy12a;
-  val qalpha_bn_names = map (unsuffix "_raw" o Long_Name.base_name o fst o dest_Const) alpha_ts_bn
-  val (qalpha_ts_bn, qalphabn_defs, lthy12c) = quotient_lift_consts_export qtys (qalpha_bn_names ~~ alpha_ts_bn) lthy12b;
-  val _ = tracing "Lifting permutations";
-  val thy = Local_Theory.exit_global lthy12c;
-  val perm_names = map (fn x => "permute_" ^ x) qty_names
-  val thy' = define_lifted_perms qtys qty_full_names (perm_names ~~ perms) raw_perm_simps thy;
-  val lthy13 = Theory_Target.init NONE thy';
-  val q_name = space_implode "_" qty_names;
-  fun suffix_bind s = Binding.qualify true q_name (Binding.name s);
-  val _ = tracing "Lifting induction";
-  val constr_names = map (Long_Name.base_name o fst o dest_Const) consts;
-  val q_induct = Rule_Cases.name constr_names (lift_thm qtys lthy13 induct);
-  fun note_suffix s th ctxt =
-    snd (Local_Theory.note ((suffix_bind s, []), th) ctxt);
-  fun note_simp_suffix s th ctxt =
-    snd (Local_Theory.note ((suffix_bind s, [Attrib.internal (K Simplifier.simp_add)]), th) ctxt);
-  val (_, lthy14) = Local_Theory.note ((suffix_bind "induct",
-    [Attrib.internal (K (Rule_Cases.case_names constr_names))]), [Rule_Cases.name constr_names q_induct]) lthy13;
-  val q_inducts = Project_Rule.projects lthy13 (1 upto (length fv)) q_induct
-  val (_, lthy14a) = Local_Theory.note ((suffix_bind "inducts", []), q_inducts) lthy14;
-  val q_perm = map (lift_thm qtys lthy14) raw_perm_def;
-  val lthy15 = note_simp_suffix "perm" q_perm lthy14a;
-  val q_fv = map (lift_thm qtys lthy15) fv_def;
-  val lthy16 = note_simp_suffix "fv" q_fv lthy15;
-  val q_bn = map (lift_thm qtys lthy16) raw_bn_eqs;
-  val lthy17 = note_simp_suffix "bn" q_bn lthy16;
-  val _ = tracing "Lifting eq-iff";
-  val _ = map tracing (map PolyML.makestring alpha_eq_iff);
-  val eq_iff_unfolded0 = map (Local_Defs.unfold lthy17 @{thms alphas3}) alpha_eq_iff
-  val eq_iff_unfolded1 = map (Local_Defs.unfold lthy17 @{thms alphas2}) eq_iff_unfolded0
-  val eq_iff_unfolded2 = map (Local_Defs.unfold lthy17 @{thms alphas} ) eq_iff_unfolded1
-  val q_eq_iff_pre0 = map (lift_thm qtys lthy17) eq_iff_unfolded2;
-  val q_eq_iff_pre1 = map (Local_Defs.fold lthy17 @{thms alphas3}) q_eq_iff_pre0
-  val q_eq_iff_pre2 = map (Local_Defs.fold lthy17 @{thms alphas2}) q_eq_iff_pre1
-  val q_eq_iff = map (Local_Defs.fold lthy17 @{thms alphas}) q_eq_iff_pre2
-  val (_, lthy18) = Local_Theory.note ((suffix_bind "eq_iff", []), q_eq_iff) lthy17;
-  val q_dis = map (lift_thm qtys lthy18) rel_dists;
-  val lthy19 = note_simp_suffix "distinct" q_dis lthy18;
-  val q_eqvt = map (lift_thm qtys lthy19) (bv_eqvt @ fv_eqvt);
-  val (_, lthy20) = Local_Theory.note ((Binding.empty,
-    [Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), q_eqvt) lthy19;
-  val _ = tracing "Finite Support";
-  val supports = map (prove_supports lthy20 q_perm) consts;
-  val fin_supp = HOLogic.conj_elims (prove_fs lthy20 q_induct supports qtys);
-  val thy3 = Local_Theory.exit_global lthy20;
-  val lthy21 = Theory_Target.instantiation (qty_full_names, [], @{sort fs}) thy3;
-  fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp))
-  val lthy22 = Class.prove_instantiation_instance tac lthy21
-  val fv_alpha_all = combine_fv_alpha_bns (qfv_ts_nobn, qfv_ts_bn) (alpha_ts_nobn, qalpha_ts_bn) bn_nos;
-  val (names, supp_eq_t) = supp_eq fv_alpha_all;
-  val q_supp = HOLogic.conj_elims (Goal.prove lthy22 names [] supp_eq_t (fn _ => supp_eq_tac q_induct q_fv q_perm q_eq_iff lthy22 1)) handle _ => [];
-  val lthy23 = note_suffix "supp" q_supp lthy22;
-in
-  ((raw_dt_names, raw_bn_funs, raw_bn_eqs, raw_binds), lthy23)
-end
-*}
-
-
-ML {* 
-(* parsing the datatypes and declaring *)
-(* constructors in the local theory    *)
-fun prepare_dts dt_strs lthy = 
-let
-  val thy = ProofContext.theory_of lthy
-  
-  fun mk_type full_tname tvrs =
-    Type (full_tname, map (fn a => TVar ((a, 0), [])) tvrs)
-
-  fun prep_cnstr lthy full_tname tvs (cname, anno_tys, mx, _) =
-  let
-    val tys = map (Syntax.read_typ lthy o snd) anno_tys
-    val ty = mk_type full_tname tvs
-  in
-    ((cname, tys ---> ty, mx), (cname, tys, mx))
-  end
-  
-  fun prep_dt lthy (tvs, tname, mx, cnstrs) = 
-  let
-    val full_tname = Sign.full_name thy tname
-    val (cnstrs', cnstrs'') = 
-      split_list (map (prep_cnstr lthy full_tname tvs) cnstrs)
-  in
-    (cnstrs', (tvs, tname, mx, cnstrs''))
-  end 
-
-  val (cnstrs, dts) = 
-    split_list (map (prep_dt lthy) dt_strs)
-in
-  lthy
-  |> Local_Theory.theory (Sign.add_consts_i (flat cnstrs))
-  |> pair dts
-end
-*}
-
-ML {*
-(* parsing the binding function specification and *)
-(* declaring the functions in the local theory    *)
-fun prepare_bn_funs bn_fun_strs bn_eq_strs lthy =
-let
-  val ((bn_funs, bn_eqs), _) = 
-    Specification.read_spec bn_fun_strs bn_eq_strs lthy
-
-  fun prep_bn_fun ((bn, T), mx) = (bn, T, mx) 
-  val bn_funs' = map prep_bn_fun bn_funs
-in
-  lthy
-  |> Local_Theory.theory (Sign.add_consts_i bn_funs')
-  |> pair (bn_funs', bn_eqs) 
-end 
-*}
-
-ML {*
-fun find_all eq xs (k',i) = 
-  maps (fn (k, (v1, v2)) => if eq (k, k') then [(v1, v2, i)] else []) xs
-*}
-
-ML {*
-(* associates every SOME with the index in the list; drops NONEs *)
-fun mk_env xs =
-  let
-    fun mapp (_: int) [] = []
-      | mapp i (a :: xs) = 
-         case a of
-           NONE => mapp (i + 1) xs
-         | SOME x => (x, i) :: mapp (i + 1) xs
-  in mapp 0 xs end
-*}
-
-ML {*
-fun env_lookup xs x =
-  case AList.lookup (op =) xs x of
-    SOME x => x
-  | NONE => error ("cannot find " ^ x ^ " in the binding specification.");
-*}
-
-ML {*
-val recursive = Unsynchronized.ref false
-val alpha_type = Unsynchronized.ref AlphaGen
-*}
-
-ML {*
-fun prepare_binds dt_strs lthy = 
-let
-  fun extract_annos_binds dt_strs =
-    map (map (fn (_, antys, _, bns) => (map fst antys, bns))) dt_strs
-
-  fun prep_bn env bn_str =
-    case (Syntax.read_term lthy bn_str) of
-       Free (x, _) => (NONE, env_lookup env x)
-     | Const (a, T) $ Free (x, _) => (SOME (Const (a, T), !recursive), env_lookup env x)
-     | _ => error (bn_str ^ " not allowed as binding specification.");  
- 
-  fun prep_typ env (i, opt_name) = 
-    case opt_name of
-      NONE => []
-    | SOME x => find_all (op=) env (x,i);
-        
-  (* annos - list of annotation for each type (either NONE or SOME fo a type *)
-  
-  fun prep_binds (annos, bind_strs) = 
-  let
-    val env = mk_env annos (* for every label the index *)
-    val binds = map (fn (x, y) => (x, prep_bn env y)) bind_strs  
-  in
-    map_index (prep_typ binds) annos
-  end
-
-  val result = map (map (map (map (fn (a, b, c) => 
-    (a, b, c, if !alpha_type=AlphaLst andalso a = NONE then AlphaGen else !alpha_type)))))
-      (map (map prep_binds) (extract_annos_binds (get_cnstrs dt_strs)))
- 
-  val _ = warning (@{make_string} result)
-
-in
-  result
-end
-*}
-
-ML {*
-fun nominal_datatype2_cmd (dt_strs, bn_fun_strs, bn_eq_strs) lthy =
-let
-  fun prep_typ (tvs, tname, mx, _) = (tname, length tvs, mx)
-
-  val lthy0 = 
-    Local_Theory.theory (Sign.add_types (map prep_typ dt_strs)) lthy
-  val (dts, lthy1) = 
-    prepare_dts dt_strs lthy0
-  val ((bn_funs, bn_eqs), lthy2) = 
-    prepare_bn_funs bn_fun_strs bn_eq_strs lthy1
-  val binds = prepare_binds dt_strs lthy2
-in
-  nominal_datatype2 dts bn_funs bn_eqs binds lthy |> snd
-end
-*}
-
-
-(* Command Keyword *)
-
-ML {*
-let
-   val kind = OuterKeyword.thy_decl
-in
-   OuterSyntax.local_theory "nominal_datatype" "test" kind 
-     (main_parser >> nominal_datatype2_cmd)
-end
-*}
-
-
-end
-
-
-