Nominal/Fv.thy
changeset 2008 1bddffddc03f
parent 2007 7ee9a2fefc77
child 2009 4f7d7cbd4bc8
equal deleted inserted replaced
2007:7ee9a2fefc77 2008:1bddffddc03f
     1 theory Fv
       
     2 imports "../Nominal-General/Nominal2_Atoms" 
       
     3         "Abs" "Perm" "Rsp" "Nominal2_FSet"
       
     4 begin
       
     5 
       
     6 (* The bindings data structure:
       
     7 
       
     8   Bindings are a list of lists of lists of triples.
       
     9 
       
    10    The first list represents the datatypes defined.
       
    11    The second list represents the constructors.
       
    12    The internal list is a list of all the bndings that
       
    13    concern the constructor.
       
    14 
       
    15    Every triple consists of a function, the binding and
       
    16    the body.
       
    17 
       
    18   Eg:
       
    19 nominal_datatype
       
    20 
       
    21    C1
       
    22  | C2 x y z bind x in z
       
    23  | C3 x y z bind f x in z bind g y in z
       
    24 
       
    25 yields:
       
    26 [
       
    27  [],
       
    28  [(NONE, 0, 2)],
       
    29  [(SOME (Const f), 0, 2), (Some (Const g), 1, 2)]]
       
    30 
       
    31 A SOME binding has to have a function which takes an appropriate
       
    32 argument and returns an atom set. A NONE binding has to be on an
       
    33 argument that is an atom or an atom set.
       
    34 *)
       
    35 
       
    36 (*
       
    37 An overview of the generation of free variables:
       
    38 
       
    39 1) fv_bn functions are generated only for the non-recursive binds.
       
    40 
       
    41    An fv_bn for a constructor is a union of values for the arguments:
       
    42 
       
    43    For an argument x that is in the bn function
       
    44    - if it is a recursive argument bn' we return: fv_bn' x
       
    45    - otherwise empty
       
    46 
       
    47    For an argument x that is not in the bn function
       
    48    - for atom we return: {atom x}
       
    49    - for atom set we return: atom ` x
       
    50    - for a recursive call to type ty' we return: fv_ty' x
       
    51      with fv of the appropriate type
       
    52    - otherwise empty
       
    53 
       
    54 2) fv_ty functions generated for all types being defined:
       
    55 
       
    56    fv_ty for a constructor is a union of values for the arguments.
       
    57 
       
    58    For an argument that is bound in a shallow binding we return empty.
       
    59 
       
    60    For an argument x that bound in a non-recursive deep binding
       
    61    we return: fv_bn x.
       
    62 
       
    63    Otherwise we return the free variables of the argument minus the
       
    64    bound variables of the argument.
       
    65 
       
    66    The free variables for an argument x are:
       
    67    - for an atom: {atom x}
       
    68    - for atom set: atom ` x
       
    69    - for recursive call to type ty' return: fv_ty' x
       
    70    - for nominal datatype ty' return: fv_ty' x
       
    71 
       
    72    The bound variables are a union of results of all bindings that
       
    73    involve the given argument. For a paricular binding:
       
    74 
       
    75    - for a binding function bn: bn x
       
    76    - for a recursive argument of type ty': fv_fy' x
       
    77    - for nominal datatype ty' return: fv_ty' x
       
    78 *)
       
    79 
       
    80 (*
       
    81 An overview of the generation of alpha-equivalence:
       
    82 
       
    83 1) alpha_bn relations are generated for binding functions.
       
    84 
       
    85    An alpha_bn for a constructor is true if a conjunction of
       
    86    propositions for each argument holds.
       
    87 
       
    88    For an argument a proposition is build as follows from
       
    89    th:
       
    90 
       
    91    - for a recursive argument in the bn function, we return: alpha_bn argl argr
       
    92    - for a recursive argument for type ty not in bn, we return: alpha_ty argl argr
       
    93    - for other arguments in the bn function we return: True
       
    94    - for other arguments not in the bn function we return: argl = argr
       
    95 
       
    96 2) alpha_ty relations are generated for all the types being defined:
       
    97 
       
    98    For each constructor we gather all the arguments that are bound,
       
    99    and for each of those we add a permutation. We associate those
       
   100    permutations with the bindings. Note that two bindings can have
       
   101    the same permutation if the arguments being bound are the same.
       
   102 
       
   103    An alpha_ty for a constructor is true if there exist permutations
       
   104    as above such that a conjunction of propositions for all arguments holds.
       
   105 
       
   106    For an argument we allow bindings where only one of the following
       
   107    holds:
       
   108 
       
   109    - Argument is bound in some shallow bindings: We return true
       
   110    - Argument of type ty is bound recursively in some other
       
   111      arguments [i1, .. in] with one binding function bn.
       
   112      We return:
       
   113 
       
   114      (bn argl, (argl, argl_i1, ..., argl_in)) \<approx>gen
       
   115      \<lambda>(argl,argl1,..,argln) (argr,argr1,..,argrn). 
       
   116          (alpha_ty argl argr) \<and> (alpha_i1 argl1 argr1) \<and> .. \<and> (alpha_in argln argrn)
       
   117      \<lambda>(arg,arg1,..,argn). (fv_ty arg) \<union> (fv_i1 arg1) \<union> .. \<union> (fv_in argn)
       
   118      pi
       
   119      (bn argr, (argr, argr_i1, ..., argr_in))
       
   120 
       
   121    - Argument is bound in some deep non-recursive bindings.
       
   122      We return: alpha_bn argl argr
       
   123    - Argument of type ty has some shallow bindings [b1..bn] and/or
       
   124      non-recursive bindings [f1 a1, .., fm am], where the bindings
       
   125      have the permutations p1..pl. We return:
       
   126 
       
   127      (b1l \<union>..\<union> bnl \<union> f1 a1l \<union>..\<union> fn anl, argl) \<approx>gen
       
   128      alpha_ty fv_ty (p1 +..+ pl)
       
   129      (b1r \<union>..\<union> bnr \<union> f1 a1r \<union>..\<union> fn anr, argr)
       
   130 
       
   131    - Argument has some recursive bindings. The bindings were
       
   132      already treated in 2nd case so we return: True
       
   133    - Argument has no bindings and is not bound.
       
   134      If it is recursive for type ty, we return: alpha_ty argl argr
       
   135      Otherwise we return: argl = argr
       
   136 
       
   137 *)
       
   138 
       
   139 ML {*
       
   140 datatype alpha_mode = AlphaGen | AlphaRes | AlphaLst;
       
   141 *}
       
   142 
       
   143 ML {*
       
   144 fun atyp_const AlphaGen = @{const_name alpha_gen}
       
   145   | atyp_const AlphaRes = @{const_name alpha_res}
       
   146   | atyp_const AlphaLst = @{const_name alpha_lst}
       
   147 *}
       
   148 
       
   149 (* TODO: make sure that parser checks that bindings are compatible *)
       
   150 ML {*
       
   151 fun alpha_const_for_binds [] = atyp_const AlphaGen
       
   152   | alpha_const_for_binds ((NONE, _, _, at) :: t) = atyp_const at
       
   153   | alpha_const_for_binds ((SOME (_, _), _, _, at) :: _) = atyp_const at
       
   154 *}
       
   155 
       
   156 ML {*
       
   157 fun is_atom thy typ =
       
   158   Sign.of_sort thy (typ, @{sort at})
       
   159 
       
   160 fun is_atom_set thy (Type ("fun", [t, @{typ bool}])) = is_atom thy t
       
   161   | is_atom_set _ _ = false;
       
   162 
       
   163 fun is_atom_fset thy (Type ("FSet.fset", [t])) = is_atom thy t
       
   164   | is_atom_fset _ _ = false;
       
   165 *}
       
   166 
       
   167 
       
   168 (* Like map2, only if the second list is empty passes empty lists insted of error *)
       
   169 ML {*
       
   170 fun map2i _ [] [] = []
       
   171   | map2i f (x :: xs) (y :: ys) = f x y :: map2i f xs ys
       
   172   | map2i f (x :: xs) [] = f x [] :: map2i f xs []
       
   173   | map2i _ _ _ = raise UnequalLengths;
       
   174 *}
       
   175 
       
   176 (* Finds bindings with the same function and binding, and gathers all
       
   177    bodys for such pairs
       
   178  *)
       
   179 ML {*
       
   180 fun gather_binds binds =
       
   181 let
       
   182   fun gather_binds_cons binds =
       
   183     let
       
   184       val common = map (fn (f, bi, _, aty) => (f, bi, aty)) binds
       
   185       val nodups = distinct (op =) common
       
   186       fun find_bodys (sf, sbi, sty) =
       
   187         filter (fn (f, bi, _, aty) => f = sf andalso bi = sbi andalso aty = sty) binds
       
   188       val bodys = map ((map (fn (_, _, bo, _) => bo)) o find_bodys) nodups
       
   189     in
       
   190       nodups ~~ bodys
       
   191     end
       
   192 in
       
   193   map (map gather_binds_cons) binds
       
   194 end
       
   195 *}
       
   196 
       
   197 ML {*
       
   198 fun un_gather_binds_cons binds =
       
   199   flat (map (fn (((f, bi, aty), bos), pi) => map (fn bo => ((f, bi, bo, aty), pi)) bos) binds)
       
   200 *}
       
   201 
       
   202 ML {*
       
   203   open Datatype_Aux; (* typ_of_dtyp, DtRec, ... *);
       
   204 *}
       
   205 ML {*
       
   206   (* TODO: It is the same as one in 'nominal_atoms' *)
       
   207   fun mk_atom ty = Const (@{const_name atom}, ty --> @{typ atom});
       
   208   val noatoms = @{term "{} :: atom set"};
       
   209   fun mk_single_atom x = HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x];
       
   210   fun mk_union sets =
       
   211     fold (fn a => fn b =>
       
   212       if a = noatoms then b else
       
   213       if b = noatoms then a else
       
   214       if a = b then a else
       
   215       HOLogic.mk_binop @{const_name sup} (a, b)) (rev sets) noatoms;
       
   216   val mk_inter = foldr1 (HOLogic.mk_binop @{const_name inf})
       
   217   fun mk_diff a b =
       
   218     if b = noatoms then a else
       
   219     if b = a then noatoms else
       
   220     HOLogic.mk_binop @{const_name minus} (a, b);
       
   221   fun mk_atom_set t =
       
   222     let
       
   223       val ty = fastype_of t;
       
   224       val atom_ty = HOLogic.dest_setT ty --> @{typ atom};
       
   225       val img_ty = atom_ty --> ty --> @{typ "atom set"};
       
   226     in
       
   227       (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t)
       
   228     end;
       
   229   fun mk_atom_fset t =
       
   230     let
       
   231       val ty = fastype_of t;
       
   232       val atom_ty = dest_fsetT ty --> @{typ atom};
       
   233       val fmap_ty = atom_ty --> ty --> @{typ "atom fset"};
       
   234       val fset_to_set = @{term "fset_to_set :: atom fset \<Rightarrow> atom set"}
       
   235     in
       
   236       fset_to_set $ ((Const (@{const_name fmap}, fmap_ty) $ Const (@{const_name atom}, atom_ty) $ t))
       
   237     end;
       
   238   (* Similar to one in USyntax *)
       
   239   fun mk_pair (fst, snd) =
       
   240     let val ty1 = fastype_of fst
       
   241       val ty2 = fastype_of snd
       
   242       val c = HOLogic.pair_const ty1 ty2
       
   243     in c $ fst $ snd
       
   244     end;
       
   245 *}
       
   246 
       
   247 (* Given [fv1, fv2, fv3] creates %(x, y, z). fv1 x u fv2 y u fv3 z *)
       
   248 ML {*
       
   249 fun mk_compound_fv fvs =
       
   250 let
       
   251   val nos = (length fvs - 1) downto 0;
       
   252   val fvs_applied = map (fn (fv, no) => fv $ Bound no) (fvs ~~ nos);
       
   253   val fvs_union = mk_union fvs_applied;
       
   254   val (tyh :: tys) = rev (map (domain_type o fastype_of) fvs);
       
   255   fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
       
   256 in
       
   257   fold fold_fun tys (Abs ("", tyh, fvs_union))
       
   258 end;
       
   259 *}
       
   260 
       
   261 (* Given [R1, R2, R3] creates %(x,x'). %(y,y'). %(z,z'). R x x' \<and> R y y' \<and> R z z' *)
       
   262 ML {*
       
   263 fun mk_compound_alpha Rs =
       
   264 let
       
   265   val nos = (length Rs - 1) downto 0;
       
   266   val nos2 = (2 * length Rs - 1) downto length Rs;
       
   267   val Rs_applied = map (fn (R, (no2, no)) => R $ Bound no2 $ Bound no) (Rs ~~ (nos2 ~~ nos));
       
   268   val Rs_conj = mk_conjl Rs_applied;
       
   269   val (tyh :: tys) = rev (map (domain_type o fastype_of) Rs);
       
   270   fun fold_fun ty t = HOLogic.mk_split (Abs ("", ty, t))
       
   271   val abs_rhs = fold fold_fun tys (Abs ("", tyh, Rs_conj))
       
   272 in
       
   273   fold fold_fun tys (Abs ("", tyh, abs_rhs))
       
   274 end;
       
   275 *}
       
   276 
       
   277 
       
   278 ML {*
       
   279 fun non_rec_binds l =
       
   280 let
       
   281   fun is_non_rec (SOME (f, false), _, _, _) = SOME f
       
   282     | is_non_rec _ = NONE
       
   283 in
       
   284   distinct (op =) (map_filter is_non_rec (flat (flat l)))
       
   285 end
       
   286 *}
       
   287 
       
   288 (* We assume no bindings in the type on which bn is defined *)
       
   289 ML {*
       
   290 fun fv_bn thy (dt_info : Datatype_Aux.info) fv_frees bn_fvbn (fvbn, (bn, ith_dtyp, args_in_bns)) =
       
   291 let
       
   292   val {descr, sorts, ...} = dt_info;
       
   293   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   294   fun fv_bn_constr (cname, dts) args_in_bn =
       
   295   let
       
   296     val Ts = map (typ_of_dtyp descr sorts) dts;
       
   297     val names = Datatype_Prop.make_tnames Ts;
       
   298     val args = map Free (names ~~ Ts);
       
   299     val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       
   300     fun fv_arg ((dt, x), arg_no) =
       
   301       let
       
   302         val ty = fastype_of x
       
   303 (*        val _ = tracing ("B 1" ^ PolyML.makestring args_in_bn);*)
       
   304 (*        val _ = tracing ("B 2" ^ PolyML.makestring bn_fvbn);*)
       
   305       in
       
   306         case AList.lookup (op=) args_in_bn arg_no of
       
   307           SOME NONE => @{term "{} :: atom set"}
       
   308         | SOME (SOME (f : term)) => (the (AList.lookup (op=) bn_fvbn f)) $ x
       
   309         | NONE =>
       
   310             if is_atom thy ty then mk_single_atom x else
       
   311             if is_atom_set thy ty then mk_atom_set x else
       
   312             if is_atom_fset thy ty then mk_atom_fset x else
       
   313             if is_rec_type dt then nth fv_frees (body_index dt) $ x else
       
   314             @{term "{} :: atom set"}
       
   315       end;
       
   316     val arg_nos = 0 upto (length dts - 1)
       
   317   in
       
   318     HOLogic.mk_Trueprop (HOLogic.mk_eq
       
   319       (fvbn $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ arg_nos))))
       
   320   end;
       
   321   val (_, (_, _, constrs)) = nth descr ith_dtyp;
       
   322   val eqs = map2i fv_bn_constr constrs args_in_bns
       
   323 in
       
   324   ((bn, fvbn), eqs)
       
   325 end
       
   326 *}
       
   327 
       
   328 ML {* print_depth 100 *}
       
   329 ML {*
       
   330 fun fv_bns thy dt_info fv_frees rel_bns =
       
   331 let
       
   332   fun mk_fvbn_free (bn, ith, _) =
       
   333     let
       
   334       val fvbn_name = "fv_" ^ (Long_Name.base_name (fst (dest_Const bn)));
       
   335     in
       
   336       (fvbn_name, Free (fvbn_name, fastype_of (nth fv_frees ith)))
       
   337     end;
       
   338   val (fvbn_names, fvbn_frees) = split_list (map mk_fvbn_free rel_bns);
       
   339   val bn_fvbn = (map (fn (bn, _, _) => bn) rel_bns) ~~ fvbn_frees
       
   340   val (l1, l2) = split_list (map (fv_bn thy dt_info fv_frees bn_fvbn) (fvbn_frees ~~ rel_bns));
       
   341 in
       
   342   (l1, (fvbn_names ~~ l2))
       
   343 end
       
   344 *}
       
   345 
       
   346 
       
   347 ML {*
       
   348 fun alpha_bn (dt_info : Datatype_Aux.info) alpha_frees bn_alphabn ((bn, ith_dtyp, args_in_bns), (alpha_bn_free, _ (*is_rec*) )) =
       
   349 let
       
   350   val {descr, sorts, ...} = dt_info;
       
   351   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   352   fun alpha_bn_constr (cname, dts) args_in_bn =
       
   353   let
       
   354     val Ts = map (typ_of_dtyp descr sorts) dts;
       
   355     val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
       
   356     val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts);
       
   357     val args = map Free (names ~~ Ts);
       
   358     val args2 = map Free (names2 ~~ Ts);
       
   359     val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       
   360     val rhs = HOLogic.mk_Trueprop
       
   361       (alpha_bn_free $ (list_comb (c, args)) $ (list_comb (c, args2)));
       
   362     fun lhs_arg ((dt, arg_no), (arg, arg2)) =
       
   363       case AList.lookup (op=) args_in_bn arg_no of
       
   364         SOME NONE => @{term True}
       
   365       | SOME (SOME f) => (the (AList.lookup (op=) bn_alphabn f)) $ arg $ arg2
       
   366       | NONE =>
       
   367           if is_rec_type dt then (nth alpha_frees (body_index dt)) $ arg $ arg2
       
   368           else HOLogic.mk_eq (arg, arg2)
       
   369     val arg_nos = 0 upto (length dts - 1)
       
   370     val lhss = mk_conjl (map lhs_arg (dts ~~ arg_nos ~~ (args ~~ args2)))
       
   371     val eq = Logic.mk_implies (HOLogic.mk_Trueprop lhss, rhs)
       
   372   in
       
   373     eq
       
   374   end
       
   375   val (_, (_, _, constrs)) = nth descr ith_dtyp;
       
   376   val eqs = map2i alpha_bn_constr constrs args_in_bns
       
   377 in
       
   378   ((bn, alpha_bn_free), eqs)
       
   379 end
       
   380 *}
       
   381 
       
   382 ML {*
       
   383 fun alpha_bns dt_info alpha_frees rel_bns bns_rec =
       
   384 let
       
   385   val {descr, sorts, ...} = dt_info;
       
   386   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   387   fun mk_alphabn_free (bn, ith, _) =
       
   388     let
       
   389       val alphabn_name = "alpha_" ^ (Long_Name.base_name (fst (dest_Const bn)));
       
   390       val alphabn_type = nth_dtyp ith --> nth_dtyp ith --> @{typ bool};
       
   391       val alphabn_free = Free(alphabn_name, alphabn_type);
       
   392     in
       
   393       (alphabn_name, alphabn_free)
       
   394     end;
       
   395   val (alphabn_names, alphabn_frees) = split_list (map mk_alphabn_free rel_bns);
       
   396   val bn_alphabn = (map (fn (bn, _, _) => bn) rel_bns) ~~ alphabn_frees;
       
   397   val pair = split_list (map (alpha_bn dt_info alpha_frees bn_alphabn)
       
   398     (rel_bns ~~ (alphabn_frees ~~ bns_rec)))
       
   399 in
       
   400   (alphabn_names, pair)
       
   401 end
       
   402 *}
       
   403 
       
   404 
       
   405 (* Checks that a list of bindings contains only compatible ones *)
       
   406 ML {*
       
   407 fun bns_same l =
       
   408   length (distinct (op =) (map (fn ((b, _, _, atyp), _) => (b, atyp)) l)) = 1
       
   409 *}
       
   410 
       
   411 ML {*
       
   412 fun setify x =
       
   413   if fastype_of x = @{typ "atom list"} then
       
   414   Const (@{const_name set}, @{typ "atom list \<Rightarrow> atom set"}) $ x else x
       
   415 *}
       
   416 
       
   417 ML {*
       
   418 fun define_fv (dt_info : Datatype_Aux.info) bindsall bns lthy =
       
   419 let
       
   420   val thy = ProofContext.theory_of lthy;
       
   421   val {descr, sorts, ...} = dt_info;
       
   422   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   423   val fv_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
       
   424     "fv_" ^ name_of_typ (nth_dtyp i)) descr);
       
   425   val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr;
       
   426   val fv_frees = map Free (fv_names ~~ fv_types);
       
   427 (* TODO: We need a transitive closure, but instead we do this hack considering
       
   428    all binding functions as recursive or not *)
       
   429   val nr_bns =
       
   430     if (non_rec_binds bindsall) = [] then []
       
   431     else map (fn (bn, _, _) => bn) bns;
       
   432   val rel_bns = filter (fn (bn, _, _) => bn mem nr_bns) bns;
       
   433   val (bn_fv_bns, fv_bn_names_eqs) = fv_bns thy dt_info fv_frees rel_bns;
       
   434   val fvbns = map snd bn_fv_bns;
       
   435   val (fv_bn_names, fv_bn_eqs) = split_list fv_bn_names_eqs;
       
   436 
       
   437   fun fv_constr ith_dtyp (cname, dts) bindcs =
       
   438     let
       
   439       val Ts = map (typ_of_dtyp descr sorts) dts;
       
   440       val bindslen = length bindcs
       
   441       val pi_strs_same = replicate bindslen "pi"
       
   442       val pi_strs = Name.variant_list [] pi_strs_same;
       
   443       val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
       
   444       val bind_pis_gath = bindcs ~~ pis;
       
   445       val bind_pis = un_gather_binds_cons bind_pis_gath;
       
   446       val bindcs = map fst bind_pis;
       
   447       val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
       
   448       val args = map Free (names ~~ Ts);
       
   449       val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       
   450       val fv_c = nth fv_frees ith_dtyp;
       
   451       val arg_nos = 0 upto (length dts - 1)
       
   452       fun fv_bind args (NONE, i, _, _) =
       
   453             if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
       
   454             if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
       
   455             if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
       
   456             if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
       
   457             (* TODO goes the code for preiously defined nominal datatypes *)
       
   458             @{term "{} :: atom set"}
       
   459         | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
       
   460       fun fv_binds_as_set args relevant = mk_union (map (setify o fv_bind args) relevant)
       
   461       fun find_nonrec_binder j (SOME (f, false), i, _, _) = if i = j then SOME f else NONE
       
   462         | find_nonrec_binder _ _ = NONE
       
   463       fun fv_arg ((dt, x), arg_no) =
       
   464         case get_first (find_nonrec_binder arg_no) bindcs of
       
   465           SOME f =>
       
   466             (case get_first (fn (x, y) => if x = f then SOME y else NONE) bn_fv_bns of
       
   467                 SOME fv_bn => fv_bn $ x
       
   468               | NONE => error "bn specified in a non-rec binding but not in bn list")
       
   469         | NONE =>
       
   470             let
       
   471               val arg =
       
   472                 if is_rec_type dt then nth fv_frees (body_index dt) $ x else
       
   473                 if ((is_atom thy) o fastype_of) x then mk_single_atom x else
       
   474                 if ((is_atom_set thy) o fastype_of) x then mk_atom_set x else
       
   475                 if ((is_atom_fset thy) o fastype_of) x then mk_atom_fset x else
       
   476                 (* TODO goes the code for preiously defined nominal datatypes *)
       
   477                 @{term "{} :: atom set"};
       
   478               (* If i = j then we generate it only once *)
       
   479               val relevant = filter (fn (_, i, j, _) => ((i = arg_no) orelse (j = arg_no))) bindcs;
       
   480               val sub = fv_binds_as_set args relevant
       
   481             in
       
   482               mk_diff arg sub
       
   483             end;
       
   484       val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq
       
   485         (fv_c $ list_comb (c, args), mk_union (map fv_arg  (dts ~~ args ~~ arg_nos))))
       
   486     in
       
   487       fv_eq
       
   488     end;
       
   489   fun fv_eq (i, (_, _, constrs)) binds = map2i (fv_constr i) constrs binds;
       
   490   val fveqs = map2i fv_eq descr (gather_binds bindsall)
       
   491   val fv_eqs_perfv = fveqs
       
   492   val rel_bns_nos = map (fn (_, i, _) => i) rel_bns;
       
   493   fun filter_fun (_, b) = b mem rel_bns_nos;
       
   494   val all_fvs = (fv_names ~~ fv_eqs_perfv) ~~ (0 upto (length fv_names - 1))
       
   495   val (fv_names_fst, fv_eqs_fst) = apsnd flat (split_list (map fst (filter_out filter_fun all_fvs)))
       
   496   val (fv_names_snd, fv_eqs_snd) = apsnd flat (split_list (map fst (filter filter_fun all_fvs)))
       
   497   val fv_eqs_all = fv_eqs_fst @ (flat fv_bn_eqs);
       
   498   val fv_names_all = fv_names_fst @ fv_bn_names;
       
   499   val add_binds = map (fn x => (Attrib.empty_binding, x))
       
   500 (* Function_Fun.add_fun Function_Common.default_config ... true *)
       
   501   val (fvs, lthy') = (Primrec.add_primrec
       
   502     (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_all) (add_binds fv_eqs_all) lthy)
       
   503   val (fvs2, lthy'') =
       
   504     if fv_eqs_snd = [] then (([], []), lthy') else
       
   505    (Primrec.add_primrec
       
   506     (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_snd) (add_binds fv_eqs_snd) lthy')
       
   507   val ordered_fvs = fv_frees @ fvbns;
       
   508   val all_fvs = (fst fvs @ fst fvs2, snd fvs @ snd fvs2)
       
   509 in
       
   510   ((all_fvs, ordered_fvs), lthy'')
       
   511 end
       
   512 *}
       
   513 
       
   514 ML {*
       
   515 fun define_alpha (dt_info : Datatype_Aux.info) bindsall bns fv_frees lthy =
       
   516 let
       
   517   val thy = ProofContext.theory_of lthy;
       
   518   val {descr, sorts, ...} = dt_info;
       
   519   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
       
   520 (* TODO: We need a transitive closure, but instead we do this hack considering
       
   521    all binding functions as recursive or not *)
       
   522   val nr_bns =
       
   523     if (non_rec_binds bindsall) = [] then []
       
   524     else map (fn (bn, _, _) => bn) bns;
       
   525   val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
       
   526     "alpha_" ^ name_of_typ (nth_dtyp i)) descr);
       
   527   val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr;
       
   528   val alpha_frees = map Free (alpha_names ~~ alpha_types);
       
   529   (* We assume that a bn is either recursive or not *)
       
   530   val bns_rec = map (fn (bn, _, _) => not (bn mem nr_bns)) bns;
       
   531   val (alpha_bn_names, (bn_alpha_bns, alpha_bn_eqs)) =
       
   532     alpha_bns dt_info alpha_frees bns bns_rec
       
   533   val alpha_bn_frees = map snd bn_alpha_bns;
       
   534   val alpha_bn_types = map fastype_of alpha_bn_frees;
       
   535 
       
   536   fun alpha_constr ith_dtyp (cname, dts) bindcs =
       
   537     let
       
   538       val Ts = map (typ_of_dtyp descr sorts) dts;
       
   539       val bindslen = length bindcs
       
   540       val pi_strs_same = replicate bindslen "pi"
       
   541       val pi_strs = Name.variant_list [] pi_strs_same;
       
   542       val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
       
   543       val bind_pis_gath = bindcs ~~ pis;
       
   544       val bind_pis = un_gather_binds_cons bind_pis_gath;
       
   545       val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
       
   546       val args = map Free (names ~~ Ts);
       
   547       val names2 = Name.variant_list (pi_strs @ names) (Datatype_Prop.make_tnames Ts);
       
   548       val args2 = map Free (names2 ~~ Ts);
       
   549       val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       
   550       val alpha = nth alpha_frees ith_dtyp;
       
   551       val arg_nos = 0 upto (length dts - 1)
       
   552       fun fv_bind args (NONE, i, _, _) =
       
   553             if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
       
   554             if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
       
   555             if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
       
   556             if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
       
   557             (* TODO goes the code for preiously defined nominal datatypes *)
       
   558             @{term "{} :: atom set"}
       
   559         | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
       
   560       fun fv_binds args relevant = mk_union (map (fv_bind args) relevant)
       
   561       val alpha_rhs =
       
   562         HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2)));
       
   563       fun alpha_arg ((dt, arg_no), (arg, arg2)) =
       
   564         let
       
   565           val rel_in_simp_binds = filter (fn ((NONE, i, _, _), _) => i = arg_no | _ => false) bind_pis;
       
   566           val rel_in_comp_binds = filter (fn ((SOME _, i, _, _), _) => i = arg_no | _ => false) bind_pis;
       
   567           val rel_has_binds = filter (fn ((NONE, _, j, _), _) => j = arg_no
       
   568                                        | ((SOME (_, false), _, j, _), _) => j = arg_no
       
   569                                        | _ => false) bind_pis;
       
   570           val rel_has_rec_binds = filter
       
   571             (fn ((SOME (_, true), _, j, _), _) => j = arg_no | _ => false) bind_pis;
       
   572         in
       
   573           case (rel_in_simp_binds, rel_in_comp_binds, rel_has_binds, rel_has_rec_binds) of
       
   574             ([], [], [], []) =>
       
   575               if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2)
       
   576               else (HOLogic.mk_eq (arg, arg2))
       
   577           | (_, [], [], []) => @{term True}
       
   578           | ([], [], [], _) => @{term True}
       
   579           | ([], ((((SOME (bn, is_rec)), _, _, atyp), _) :: _), [], []) =>
       
   580             if not (bns_same rel_in_comp_binds) then error "incompatible bindings for an argument" else
       
   581             if is_rec then
       
   582               let
       
   583                 val (rbinds, rpis) = split_list rel_in_comp_binds
       
   584                 val bound_in_nos = map (fn (_, _, i, _) => i) rbinds
       
   585                 val bound_in_ty_nos = map (fn i => body_index (nth dts i)) bound_in_nos;
       
   586                 val bound_args = arg :: map (nth args) bound_in_nos;
       
   587                 val bound_args2 = arg2 :: map (nth args2) bound_in_nos;
       
   588                 val lhs_binds = fv_binds args rbinds
       
   589                 val lhs_arg = foldr1 HOLogic.mk_prod bound_args
       
   590                 val lhs = mk_pair (lhs_binds, lhs_arg);
       
   591                 val rhs_binds = fv_binds args2 rbinds;
       
   592                 val rhs_arg = foldr1 HOLogic.mk_prod bound_args2;
       
   593                 val rhs = mk_pair (rhs_binds, rhs_arg);
       
   594                 val fvs = map (nth fv_frees) ((body_index dt) :: bound_in_ty_nos);
       
   595                 val fv = mk_compound_fv fvs;
       
   596                 val alphas = map (nth alpha_frees) ((body_index dt) :: bound_in_ty_nos);
       
   597                 val alpha = mk_compound_alpha alphas;
       
   598                 val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis);
       
   599                 val alpha_gen_pre = Const (atyp_const atyp, dummyT) $ lhs $ alpha $ fv $ pi $ rhs;
       
   600                 val alpha_gen = Syntax.check_term lthy alpha_gen_pre
       
   601               in
       
   602                 alpha_gen
       
   603               end
       
   604             else
       
   605               let
       
   606                 val alpha_bn_const =
       
   607                   nth alpha_bn_frees (find_index (fn (b, _, _) => b = bn) bns)
       
   608               in
       
   609                 alpha_bn_const $ arg $ arg2
       
   610               end
       
   611           | ([], [], relevant, []) =>
       
   612             let
       
   613               val (rbinds, rpis) = split_list relevant
       
   614               val lhs_binds = fv_binds args rbinds
       
   615               val lhs = mk_pair (lhs_binds, arg);
       
   616               val rhs_binds = fv_binds args2 rbinds;
       
   617               val rhs = mk_pair (rhs_binds, arg2);
       
   618               val alpha = nth alpha_frees (body_index dt);
       
   619               val fv = nth fv_frees (body_index dt);
       
   620               val pi = foldr1 (uncurry mk_plus) (distinct (op =) rpis);
       
   621               val alpha_const = alpha_const_for_binds rbinds;
       
   622               val alpha_gen_pre = Const (alpha_const, dummyT) $ lhs $ alpha $ fv $ pi $ rhs;
       
   623               val alpha_gen = Syntax.check_term lthy alpha_gen_pre
       
   624             in
       
   625               alpha_gen
       
   626             end
       
   627           | _ => error "Fv.alpha: not supported binding structure"
       
   628         end
       
   629       val alphas = map alpha_arg (dts ~~ arg_nos ~~ (args ~~ args2))
       
   630       val alpha_lhss = mk_conjl alphas
       
   631       val alpha_lhss_ex =
       
   632         fold (fn pi_str => fn t => HOLogic.mk_exists (pi_str, @{typ perm}, t)) pi_strs alpha_lhss
       
   633       val alpha_eq = Logic.mk_implies (HOLogic.mk_Trueprop alpha_lhss_ex, alpha_rhs)
       
   634     in
       
   635       alpha_eq
       
   636     end;
       
   637   fun alpha_eq (i, (_, _, constrs)) binds = map2i (alpha_constr i) constrs binds;
       
   638   val alphaeqs = map2i alpha_eq descr (gather_binds bindsall)
       
   639   val alpha_eqs = flat alphaeqs
       
   640   val add_binds = map (fn x => (Attrib.empty_binding, x))
       
   641   val (alphas, lthy') = (Inductive.add_inductive_i
       
   642      {quiet_mode = true, verbose = false, alt_name = Binding.empty,
       
   643       coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
       
   644      (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) (alpha_names @ alpha_bn_names)
       
   645      (alpha_types @ alpha_bn_types)) []
       
   646      (add_binds (alpha_eqs @ flat alpha_bn_eqs)) [] lthy)
       
   647 in
       
   648   (alphas, lthy')
       
   649 end
       
   650 *}
       
   651 
       
   652 end