--- a/Nominal/Ex/CPS/CPS3_DanvyFilinski_FCB2.thy Mon Jul 11 23:42:22 2011 +0900
+++ b/Nominal/Ex/CPS/CPS3_DanvyFilinski_FCB2.thy Mon Jul 11 23:42:52 2011 +0900
@@ -1,105 +1,6 @@
header {* CPS transformation of Danvy and Filinski *}
theory CPS3_DanvyFilinski imports Lt begin
-
-lemma Abs_lst_fcb2:
- fixes as bs :: "atom list"
- and x y :: "'b :: fs"
- and c::"'c::fs"
- assumes eq: "[as]lst. x = [bs]lst. y"
- and fcb1: "(set as) \<sharp>* c \<Longrightarrow> (set as) \<sharp>* f as x c"
- and fresh1: "set as \<sharp>* c"
- and fresh2: "set bs \<sharp>* c"
- and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
- and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
- shows "f as x c = f bs y c"
-proof -
- have "supp (as, x, c) supports (f as x c)"
- unfolding supports_def fresh_def[symmetric]
- by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
- then have fin1: "finite (supp (f as x c))"
- by (auto intro: supports_finite simp add: finite_supp)
- have "supp (bs, y, c) supports (f bs y c)"
- unfolding supports_def fresh_def[symmetric]
- by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
- then have fin2: "finite (supp (f bs y c))"
- by (auto intro: supports_finite simp add: finite_supp)
- obtain q::"perm" where
- fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and
- fr2: "supp q \<sharp>* Abs_lst as x" and
- inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
- using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]
- fin1 fin2
- by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
- have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
- also have "\<dots> = Abs_lst as x"
- by (simp only: fr2 perm_supp_eq)
- finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
- then obtain r::perm where
- qq1: "q \<bullet> x = r \<bullet> y" and
- qq2: "q \<bullet> as = r \<bullet> bs" and
- qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
- apply(drule_tac sym)
- apply(simp only: Abs_eq_iff2 alphas)
- apply(erule exE)
- apply(erule conjE)+
- apply(drule_tac x="p" in meta_spec)
- apply(simp add: set_eqvt)
- apply(blast)
- done
- have "(set as) \<sharp>* f as x c"
- apply(rule fcb1)
- apply(rule fresh1)
- done
- then have "q \<bullet> ((set as) \<sharp>* f as x c)"
- by (simp add: permute_bool_def)
- then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
- apply(simp add: fresh_star_eqvt set_eqvt)
- apply(subst (asm) perm1)
- using inc fresh1 fr1
- apply(auto simp add: fresh_star_def fresh_Pair)
- done
- then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
- then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
- apply(simp add: fresh_star_eqvt set_eqvt)
- apply(subst (asm) perm2[symmetric])
- using qq3 fresh2 fr1
- apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
- done
- then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
- have "f as x c = q \<bullet> (f as x c)"
- apply(rule perm_supp_eq[symmetric])
- using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def)
- also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
- apply(rule perm1)
- using inc fresh1 fr1 by (auto simp add: fresh_star_def)
- also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
- also have "\<dots> = r \<bullet> (f bs y c)"
- apply(rule perm2[symmetric])
- using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
- also have "... = f bs y c"
- apply(rule perm_supp_eq)
- using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
- finally show ?thesis by simp
-qed
-
-lemma Abs_lst1_fcb2:
- fixes a b :: "atom"
- and x y :: "'b :: fs"
- and c::"'c :: fs"
- assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
- and fcb1: "a \<sharp> c \<Longrightarrow> a \<sharp> f a x c"
- and fresh: "{a, b} \<sharp>* c"
- and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
- and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
- shows "f a x c = f b y c"
-using e
-apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
-apply(simp_all)
-using fcb1 fresh perm1 perm2
-apply(simp_all add: fresh_star_def)
-done
-
nominal_primrec
CPS1 :: "lt \<Rightarrow> (lt \<Rightarrow> lt) \<Rightarrow> lt" ("_*_" [100,100] 100)
and
@@ -145,9 +46,6 @@
--"-"
apply (rule arg_cong)
back
- apply simp
- apply (erule Abs_lst1_fcb2)
- apply simp
apply (thin_tac "eqvt ka")
apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
@@ -173,182 +71,12 @@
apply (simp add: supp_Inr finite_supp)
apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
apply (simp only: )
- apply (erule Abs_lst1_fcb2)
- apply (simp add: Abs_fresh_iff)
+ apply (erule_tac c="a" in Abs_lst1_fcb2')
+ apply (simp add: Abs_fresh_iff lt.fresh)
apply (simp add: fresh_star_def fresh_Pair_elim lt.fresh fresh_at_base)
apply (subgoal_tac "p \<bullet> CPS1_CPS2_sumC (Inr (M, a~)) = CPS1_CPS2_sumC (p \<bullet> (Inr (M, a~)))")
apply (simp add: perm_supp_eq fresh_star_def lt.fresh)
- apply (drule sym)
- apply (simp only: )
- apply (simp only: permute_Abs_lst)
- apply simp
- apply (simp add: eqvt_at_def)
- apply (drule sym)
- apply (simp only:)
- apply (simp add: Abs_fresh_iff lt.fresh)
- apply clarify
- apply (erule fresh_eqvt_at)
- apply (simp add: supp_Inr finite_supp)
- apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
- apply (drule sym)
- apply (drule sym)
- apply (drule sym)
- apply (simp only:)
- apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
- apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
- apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
- apply (simp add: fresh_Pair_elim)
- apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
- back
- back
- back
- apply assumption
- apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh)
- apply (case_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> c = ca")
- apply simp_all[3]
- apply rule
- apply (case_tac "c = xa")
- apply simp_all[2]
- apply (simp add: eqvt_at_def)
- apply clarify
- apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh)
- apply (simp add: eqvt_at_def)
- apply clarify
- apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh)
- apply (case_tac "c = xa")
- apply simp
- apply (subgoal_tac "((ca \<leftrightarrow> x) \<bullet> (atom x)) \<sharp> (ca \<leftrightarrow> x) \<bullet> CPS1_CPS2_sumC (Inr (Ma, ca~))")
- apply (simp add: atom_eqvt eqvt_at_def)
- apply (simp add: flip_fresh_fresh)
- apply (subst fresh_permute_iff)
- apply (erule fresh_eqvt_at)
- apply (simp add: supp_Inr finite_supp)
- apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair)
- apply simp
- apply clarify
- apply (subgoal_tac "atom ca \<sharp> (atom x \<rightleftharpoons> atom xa) \<bullet> CPS1_CPS2_sumC (Inr (M, c~))")
- apply (simp add: eqvt_at_def)
- apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> atom ca \<sharp> CPS1_CPS2_sumC (Inr (M, c~))")
- apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
- apply (erule fresh_eqvt_at)
- apply (simp add: finite_supp supp_Inr)
- apply (simp add: fresh_Inr fresh_Pair lt.fresh)
- apply rule
- apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
- apply (simp add: fresh_def supp_at_base)
- apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
---"-"
- apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh)
- apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))")
- prefer 2
- apply (simp add: Abs1_eq_iff')
- apply (case_tac "c = a")
- apply simp_all[2]
- apply rule
- apply (simp add: eqvt_at_def)
- apply (simp add: swap_fresh_fresh fresh_Pair_elim)
- apply (erule fresh_eqvt_at)
- apply (simp add: supp_Inr finite_supp)
- apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
- apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))")
- prefer 2
- apply (simp add: Abs1_eq_iff')
- apply (case_tac "ca = a")
- apply simp_all[2]
- apply rule
- apply (simp add: eqvt_at_def)
- apply (simp add: swap_fresh_fresh fresh_Pair_elim)
- apply (erule fresh_eqvt_at)
- apply (simp add: supp_Inr finite_supp)
- apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
- apply (simp only: )
- apply (erule Abs_lst1_fcb)
- apply (simp add: Abs_fresh_iff)
- apply (drule sym)
- apply (simp only:)
- apply (simp add: Abs_fresh_iff lt.fresh)
- apply clarify
- apply (erule fresh_eqvt_at)
- apply (simp add: supp_Inr finite_supp)
- apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base)
- apply (drule sym)
- apply (drule sym)
- apply (drule sym)
- apply (simp only:)
- apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))")
- apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))")
- apply (thin_tac "atom a \<sharp> (c, ca, x, xa, M, Ma)")
- apply (simp add: fresh_Pair_elim)
- apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]])
- back
- back
- back
- apply assumption
- apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh)
- apply (case_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> c = ca")
- apply simp_all[3]
- apply rule
- apply (case_tac "c = xa")
- apply simp_all[2]
- apply (simp add: eqvt_at_def)
- apply clarify
- apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh)
- apply (simp add: eqvt_at_def)
- apply clarify
- apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh)
- apply (case_tac "c = xa")
- apply simp
- apply (subgoal_tac "((ca \<leftrightarrow> x) \<bullet> (atom x)) \<sharp> (ca \<leftrightarrow> x) \<bullet> CPS1_CPS2_sumC (Inr (Ma, ca~))")
- apply (simp add: atom_eqvt eqvt_at_def)
- apply (simp add: flip_fresh_fresh)
- apply (subst fresh_permute_iff)
- apply (erule fresh_eqvt_at)
- apply (simp add: supp_Inr finite_supp)
- apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair)
- apply simp
- apply clarify
- apply (subgoal_tac "atom ca \<sharp> (atom x \<rightleftharpoons> atom xa) \<bullet> CPS1_CPS2_sumC (Inr (M, c~))")
- apply (simp add: eqvt_at_def)
- apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> atom ca \<sharp> CPS1_CPS2_sumC (Inr (M, c~))")
- apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
- apply (erule fresh_eqvt_at)
- apply (simp add: finite_supp supp_Inr)
- apply (simp add: fresh_Inr fresh_Pair lt.fresh)
- apply rule
- apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2)
- apply (simp add: fresh_def supp_at_base)
- apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3))
- done
-
-termination
- by lexicographic_order
-
-definition psi:: "lt => lt"
- where [simp]: "psi V == V*(\<lambda>x. x)"
-
-section {* Simple consequence of CPS *}
-
-lemma [simp]: "eqvt (\<lambda>x\<Colon>lt. x)"
- by (simp add: eqvt_def eqvt_bound eqvt_lambda)
-
-lemma value_eq1 : "isValue V \<Longrightarrow> eqvt k \<Longrightarrow> V*k = k (psi V)"
- apply (cases V rule: lt.exhaust)
- apply simp_all
- apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
- apply simp
- done
-
-lemma value_eq2 : "isValue V \<Longrightarrow> V^K = K $ (psi V)"
- apply (cases V rule: lt.exhaust)
- apply simp_all
- apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh)
- apply simp
- done
-
-lemma value_eq3' : "~isValue M \<Longrightarrow> eqvt k \<Longrightarrow> M*k = (M^(Abs n (k (Var n))))"
- by (cases M rule: lt.exhaust) auto
-
-
+ oops
end