# HG changeset patch # User Cezary Kaliszyk # Date 1310395372 -32400 # Node ID 0d95e19e4f935066be2a4e9fd93f37a2526c216a # Parent 8b22497c25b944350d07127813dd13b3535c1ed9 Remove copy of FCB and cleanup diff -r 8b22497c25b9 -r 0d95e19e4f93 Nominal/Ex/CPS/CPS3_DanvyFilinski_FCB2.thy --- a/Nominal/Ex/CPS/CPS3_DanvyFilinski_FCB2.thy Mon Jul 11 23:42:22 2011 +0900 +++ b/Nominal/Ex/CPS/CPS3_DanvyFilinski_FCB2.thy Mon Jul 11 23:42:52 2011 +0900 @@ -1,105 +1,6 @@ header {* CPS transformation of Danvy and Filinski *} theory CPS3_DanvyFilinski imports Lt begin - -lemma Abs_lst_fcb2: - fixes as bs :: "atom list" - and x y :: "'b :: fs" - and c::"'c::fs" - assumes eq: "[as]lst. x = [bs]lst. y" - and fcb1: "(set as) \* c \ (set as) \* f as x c" - and fresh1: "set as \* c" - and fresh2: "set bs \* c" - and perm1: "\p. supp p \* c \ p \ (f as x c) = f (p \ as) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f bs y c) = f (p \ bs) (p \ y) c" - shows "f as x c = f bs y c" -proof - - have "supp (as, x, c) supports (f as x c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh) - then have fin1: "finite (supp (f as x c))" - by (auto intro: supports_finite simp add: finite_supp) - have "supp (bs, y, c) supports (f bs y c)" - unfolding supports_def fresh_def[symmetric] - by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh) - then have fin2: "finite (supp (f bs y c))" - by (auto intro: supports_finite simp add: finite_supp) - obtain q::"perm" where - fr1: "(q \ (set as)) \* (x, c, f as x c, f bs y c)" and - fr2: "supp q \* Abs_lst as x" and - inc: "supp q \ (set as) \ q \ (set as)" - using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"] - fin1 fin2 - by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv) - have "Abs_lst (q \ as) (q \ x) = q \ Abs_lst as x" by simp - also have "\ = Abs_lst as x" - by (simp only: fr2 perm_supp_eq) - finally have "Abs_lst (q \ as) (q \ x) = Abs_lst bs y" using eq by simp - then obtain r::perm where - qq1: "q \ x = r \ y" and - qq2: "q \ as = r \ bs" and - qq3: "supp r \ (q \ (set as)) \ set bs" - apply(drule_tac sym) - apply(simp only: Abs_eq_iff2 alphas) - apply(erule exE) - apply(erule conjE)+ - apply(drule_tac x="p" in meta_spec) - apply(simp add: set_eqvt) - apply(blast) - done - have "(set as) \* f as x c" - apply(rule fcb1) - apply(rule fresh1) - done - then have "q \ ((set as) \* f as x c)" - by (simp add: permute_bool_def) - then have "set (q \ as) \* f (q \ as) (q \ x) c" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm1) - using inc fresh1 fr1 - apply(auto simp add: fresh_star_def fresh_Pair) - done - then have "set (r \ bs) \* f (r \ bs) (r \ y) c" using qq1 qq2 by simp - then have "r \ ((set bs) \* f bs y c)" - apply(simp add: fresh_star_eqvt set_eqvt) - apply(subst (asm) perm2[symmetric]) - using qq3 fresh2 fr1 - apply(auto simp add: set_eqvt fresh_star_def fresh_Pair) - done - then have fcb2: "(set bs) \* f bs y c" by (simp add: permute_bool_def) - have "f as x c = q \ (f as x c)" - apply(rule perm_supp_eq[symmetric]) - using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def) - also have "\ = f (q \ as) (q \ x) c" - apply(rule perm1) - using inc fresh1 fr1 by (auto simp add: fresh_star_def) - also have "\ = f (r \ bs) (r \ y) c" using qq1 qq2 by simp - also have "\ = r \ (f bs y c)" - apply(rule perm2[symmetric]) - using qq3 fresh2 fr1 by (auto simp add: fresh_star_def) - also have "... = f bs y c" - apply(rule perm_supp_eq) - using qq3 fr1 fcb2 by (auto simp add: fresh_star_def) - finally show ?thesis by simp -qed - -lemma Abs_lst1_fcb2: - fixes a b :: "atom" - and x y :: "'b :: fs" - and c::"'c :: fs" - assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)" - and fcb1: "a \ c \ a \ f a x c" - and fresh: "{a, b} \* c" - and perm1: "\p. supp p \* c \ p \ (f a x c) = f (p \ a) (p \ x) c" - and perm2: "\p. supp p \* c \ p \ (f b y c) = f (p \ b) (p \ y) c" - shows "f a x c = f b y c" -using e -apply(drule_tac Abs_lst_fcb2[where c="c" and f="\(as::atom list) . f (hd as)"]) -apply(simp_all) -using fcb1 fresh perm1 perm2 -apply(simp_all add: fresh_star_def) -done - nominal_primrec CPS1 :: "lt \ (lt \ lt) \ lt" ("_*_" [100,100] 100) and @@ -145,9 +46,6 @@ --"-" apply (rule arg_cong) back - apply simp - apply (erule Abs_lst1_fcb2) - apply simp apply (thin_tac "eqvt ka") apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh) apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))") @@ -173,182 +71,12 @@ apply (simp add: supp_Inr finite_supp) apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) apply (simp only: ) - apply (erule Abs_lst1_fcb2) - apply (simp add: Abs_fresh_iff) + apply (erule_tac c="a" in Abs_lst1_fcb2') + apply (simp add: Abs_fresh_iff lt.fresh) apply (simp add: fresh_star_def fresh_Pair_elim lt.fresh fresh_at_base) apply (subgoal_tac "p \ CPS1_CPS2_sumC (Inr (M, a~)) = CPS1_CPS2_sumC (p \ (Inr (M, a~)))") apply (simp add: perm_supp_eq fresh_star_def lt.fresh) - apply (drule sym) - apply (simp only: ) - apply (simp only: permute_Abs_lst) - apply simp - apply (simp add: eqvt_at_def) - apply (drule sym) - apply (simp only:) - apply (simp add: Abs_fresh_iff lt.fresh) - apply clarify - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (drule sym) - apply (drule sym) - apply (drule sym) - apply (simp only:) - apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))") - apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))") - apply (thin_tac "atom a \ (c, ca, x, xa, M, Ma)") - apply (simp add: fresh_Pair_elim) - apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]]) - back - back - back - apply assumption - apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh) - apply (case_tac "(atom x \ atom xa) \ c = ca") - apply simp_all[3] - apply rule - apply (case_tac "c = xa") - apply simp_all[2] - apply (simp add: eqvt_at_def) - apply clarify - apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh) - apply (simp add: eqvt_at_def) - apply clarify - apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh) - apply (case_tac "c = xa") - apply simp - apply (subgoal_tac "((ca \ x) \ (atom x)) \ (ca \ x) \ CPS1_CPS2_sumC (Inr (Ma, ca~))") - apply (simp add: atom_eqvt eqvt_at_def) - apply (simp add: flip_fresh_fresh) - apply (subst fresh_permute_iff) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair) - apply simp - apply clarify - apply (subgoal_tac "atom ca \ (atom x \ atom xa) \ CPS1_CPS2_sumC (Inr (M, c~))") - apply (simp add: eqvt_at_def) - apply (subgoal_tac "(atom x \ atom xa) \ atom ca \ CPS1_CPS2_sumC (Inr (M, c~))") - apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) - apply (erule fresh_eqvt_at) - apply (simp add: finite_supp supp_Inr) - apply (simp add: fresh_Inr fresh_Pair lt.fresh) - apply rule - apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) - apply (simp add: fresh_def supp_at_base) - apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3)) ---"-" - apply (rule_tac x="(c, ca, x, xa, M, Ma)" and ?'a="name" in obtain_fresh) - apply (subgoal_tac "Abs c (CPS1_CPS2_sumC (Inr (M, c~))) = Abs a (CPS1_CPS2_sumC (Inr (M, a~)))") - prefer 2 - apply (simp add: Abs1_eq_iff') - apply (case_tac "c = a") - apply simp_all[2] - apply rule - apply (simp add: eqvt_at_def) - apply (simp add: swap_fresh_fresh fresh_Pair_elim) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (subgoal_tac "Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~))) = Abs a (CPS1_CPS2_sumC (Inr (Ma, a~)))") - prefer 2 - apply (simp add: Abs1_eq_iff') - apply (case_tac "ca = a") - apply simp_all[2] - apply rule - apply (simp add: eqvt_at_def) - apply (simp add: swap_fresh_fresh fresh_Pair_elim) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (simp only: ) - apply (erule Abs_lst1_fcb) - apply (simp add: Abs_fresh_iff) - apply (drule sym) - apply (simp only:) - apply (simp add: Abs_fresh_iff lt.fresh) - apply clarify - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr fresh_Pair lt.fresh fresh_at_base) - apply (drule sym) - apply (drule sym) - apply (drule sym) - apply (simp only:) - apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (M, a~))) = Abs c (CPS1_CPS2_sumC (Inr (M, c~)))") - apply (thin_tac "Abs a (CPS1_CPS2_sumC (Inr (Ma, a~))) = Abs ca (CPS1_CPS2_sumC (Inr (Ma, ca~)))") - apply (thin_tac "atom a \ (c, ca, x, xa, M, Ma)") - apply (simp add: fresh_Pair_elim) - apply (subst iffD1[OF meta_eq_to_obj_eq[OF eqvt_at_def]]) - back - back - back - apply assumption - apply (simp add: Abs1_eq_iff' fresh_Pair_elim fresh_at_base swap_fresh_fresh lt.fresh) - apply (case_tac "(atom x \ atom xa) \ c = ca") - apply simp_all[3] - apply rule - apply (case_tac "c = xa") - apply simp_all[2] - apply (simp add: eqvt_at_def) - apply clarify - apply (smt flip_def permute_flip_at permute_swap_cancel swap_fresh_fresh) - apply (simp add: eqvt_at_def) - apply clarify - apply (smt atom_eq_iff atom_eqvt flip_def fresh_eqvt permute_flip_at permute_swap_cancel swap_at_base_simps(3) swap_fresh_fresh) - apply (case_tac "c = xa") - apply simp - apply (subgoal_tac "((ca \ x) \ (atom x)) \ (ca \ x) \ CPS1_CPS2_sumC (Inr (Ma, ca~))") - apply (simp add: atom_eqvt eqvt_at_def) - apply (simp add: flip_fresh_fresh) - apply (subst fresh_permute_iff) - apply (erule fresh_eqvt_at) - apply (simp add: supp_Inr finite_supp) - apply (simp add: fresh_Inr lt.fresh fresh_at_base fresh_Pair) - apply simp - apply clarify - apply (subgoal_tac "atom ca \ (atom x \ atom xa) \ CPS1_CPS2_sumC (Inr (M, c~))") - apply (simp add: eqvt_at_def) - apply (subgoal_tac "(atom x \ atom xa) \ atom ca \ CPS1_CPS2_sumC (Inr (M, c~))") - apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) - apply (erule fresh_eqvt_at) - apply (simp add: finite_supp supp_Inr) - apply (simp add: fresh_Inr fresh_Pair lt.fresh) - apply rule - apply (metis Nominal2_Base.swap_commute fresh_permute_iff permute_swap_cancel2) - apply (simp add: fresh_def supp_at_base) - apply (metis atom_eq_iff permute_swap_cancel2 swap_atom_simps(3)) - done - -termination - by lexicographic_order - -definition psi:: "lt => lt" - where [simp]: "psi V == V*(\x. x)" - -section {* Simple consequence of CPS *} - -lemma [simp]: "eqvt (\x\lt. x)" - by (simp add: eqvt_def eqvt_bound eqvt_lambda) - -lemma value_eq1 : "isValue V \ eqvt k \ V*k = k (psi V)" - apply (cases V rule: lt.exhaust) - apply simp_all - apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) - apply simp - done - -lemma value_eq2 : "isValue V \ V^K = K $ (psi V)" - apply (cases V rule: lt.exhaust) - apply simp_all - apply (rule_tac x="(name, lt)" and ?'a="name" in obtain_fresh) - apply simp - done - -lemma value_eq3' : "~isValue M \ eqvt k \ M*k = (M^(Abs n (k (Var n))))" - by (cases M rule: lt.exhaust) auto - - + oops end