Alternate version of Nominal_Base: Executable version.
(* General executable permutations *)
theory GPerm
imports
"~~/src/HOL/Library/Quotient_Syntax"
"~~/src/HOL/Library/Product_ord"
"~~/src/HOL/Library/List_lexord"
begin
definition perm_apply where
"perm_apply l e = (case [a\<leftarrow>l . fst a = e] of [] \<Rightarrow> e | x # xa \<Rightarrow> snd x)"
lemma perm_apply_simps[simp]:
"perm_apply (h # t) e = (if fst h = e then snd h else perm_apply t e)"
"perm_apply [] e = e"
by (auto simp add: perm_apply_def)
definition valid_perm where
"valid_perm p \<longleftrightarrow> distinct (map fst p) \<and> fst ` set p = snd ` set p"
lemma valid_perm_zero[simp]:
"valid_perm []"
by (simp add: valid_perm_def)
lemma length_eq_card_distinct:
"length l = card (set l) \<longleftrightarrow> distinct l"
using card_distinct distinct_card by force
lemma len_set_eq_distinct:
assumes "length l = length m" "set l = set m"
shows "distinct l = distinct m"
using assms
by (simp add: length_eq_card_distinct[symmetric])
lemma valid_perm_distinct_snd: "valid_perm a \<Longrightarrow> distinct (map snd a)"
by (metis valid_perm_def image_set length_map len_set_eq_distinct)
definition
perm_eq :: "('a \<times> 'a) list \<Rightarrow> ('a \<times> 'a) list \<Rightarrow> bool" (infix "\<approx>" 50)
where
"x \<approx> y \<longleftrightarrow> valid_perm x \<and> valid_perm y \<and> (perm_apply x = perm_apply y)"
lemma perm_eq_sym[sym]:
"x \<approx> y \<Longrightarrow> y \<approx> x"
by (auto simp add: perm_eq_def)
lemma perm_eq_equivp:
"part_equivp perm_eq"
by (auto intro!: part_equivpI sympI transpI exI[of _ "[]"] simp add: perm_eq_def)
quotient_type
'a gperm = "('a \<times> 'a) list" / partial: "perm_eq"
by (rule perm_eq_equivp)
definition perm_add_raw where
"perm_add_raw p q = map (map_pair id (perm_apply p)) q @ [a\<leftarrow>p. fst a \<notin> fst ` set q]"
lemma perm_apply_del[simp]:
"e \<noteq> b \<Longrightarrow> perm_apply [a\<leftarrow>l. fst a \<noteq> b] e = perm_apply l e"
"e \<noteq> b \<Longrightarrow> e \<noteq> c \<Longrightarrow> perm_apply [a\<leftarrow>l . fst a \<noteq> b \<and> fst a \<noteq> c] e = perm_apply l e"
by (induct l) auto
lemma perm_apply_appendl:
"perm_apply a e = perm_apply b e \<Longrightarrow> perm_apply (c @ a) e = perm_apply (c @ b) e"
by (induct c) auto
lemma perm_apply_filterP:
"b \<noteq> e \<Longrightarrow> perm_apply [a\<leftarrow>l . fst a \<noteq> b \<and> P a] e = perm_apply [a\<leftarrow>l . P a] e"
by (induct l) auto
lemma perm_add_apply:
shows "perm_apply (perm_add_raw p q) e = perm_apply p (perm_apply q e)"
by (rule sym, induct q)
(auto simp add: perm_add_raw_def perm_apply_filterP intro!: perm_apply_appendl)
definition swap_pair where
"swap_pair a = (snd a, fst a)"
definition uminus_perm_raw where
[simp]: "uminus_perm_raw = map swap_pair"
lemma map_fst_minus_perm[simp]:
"map fst (uminus_perm_raw x) = map snd x"
"map snd (uminus_perm_raw x) = map fst x"
by (induct x) (auto simp add: swap_pair_def)
lemma fst_snd_set_minus_perm[simp]:
"fst ` set (uminus_perm_raw x) = snd ` set x"
"snd ` set (uminus_perm_raw x) = fst ` set x"
by (induct x) (auto simp add: swap_pair_def)
lemma fst_snd_swap_pair[simp]:
"fst (swap_pair x) = snd x"
"snd (swap_pair x) = fst x"
by (auto simp add: swap_pair_def)
lemma fst_snd_swap_pair_set[simp]:
"fst ` swap_pair ` set l = snd ` set l"
"snd ` swap_pair ` set l = fst ` set l"
by (induct l) (auto simp add: swap_pair_def)
lemma valid_perm_minus[simp]:
assumes "valid_perm x"
shows "valid_perm (map swap_pair x)"
using assms unfolding valid_perm_def
by (simp add: valid_perm_distinct_snd[OF assms] o_def)
lemma swap_pair_id[simp]:
"swap_pair (swap_pair x) = x"
unfolding swap_pair_def by simp
lemma perm_apply_minus_minus[simp]:
"perm_apply (uminus_perm_raw (uminus_perm_raw x)) = perm_apply x"
by (simp add: o_def)
lemma filter_eq_nil:
"[a\<leftarrow>a. fst a = e] = [] \<longleftrightarrow> e \<notin> fst ` set a"
"[a\<leftarrow>a. snd a = e] = [] \<longleftrightarrow> e \<notin> snd ` set a"
by (induct a) auto
lemma filter_rev_eq_nil: "[a\<leftarrow>map swap_pair a. fst a = e] = [] \<longleftrightarrow> e \<notin> snd ` set a"
by (induct a) (auto simp add: swap_pair_def)
lemma filter_fst_eq:
"[a\<leftarrow>a . fst a = e] = (l, r) # list \<Longrightarrow> l = e"
"[a\<leftarrow>a . snd a = e] = (l, r) # list \<Longrightarrow> r = e"
by (drule filter_eq_ConsD, auto)+
lemma filter_map_swap_pair:
"[a\<leftarrow>map swap_pair a. fst a = e] = map swap_pair [a\<leftarrow>a. snd a = e]"
by (induct a) auto
lemma forget_tl:
"[a\<leftarrow>l . P a] = a # b \<Longrightarrow> a \<in> set l"
by (metis Cons_eq_filter_iff in_set_conv_decomp)
lemma valid_perm_lookup_fst_eq_snd:
"[a\<leftarrow>l . fst a = f] = (f, s) # l1 \<Longrightarrow> [a\<leftarrow>l . snd a = s] = (f2, s) # l2 \<Longrightarrow> valid_perm l \<Longrightarrow> f2 = f"
apply (drule forget_tl valid_perm_distinct_snd)+
apply (case_tac "f2 = f")
apply (auto simp add: in_set_conv_nth swap_pair_def)
apply (case_tac "i = ia")
apply auto
by (metis length_map nth_eq_iff_index_eq nth_map snd_conv)
lemma valid_perm_add_minus: "valid_perm a \<Longrightarrow> perm_apply (map swap_pair a) (perm_apply a e) = e"
apply (auto simp add: filter_map_swap_pair filter_eq_nil filter_rev_eq_nil perm_apply_def split: list.split)
apply (metis filter_eq_nil(2) neq_Nil_conv valid_perm_def)
apply (metis hd.simps hd_in_set image_eqI list.simps(2) member_project project_set snd_conv)
apply (frule filter_fst_eq(1))
apply (frule filter_fst_eq(2))
apply (auto simp add: swap_pair_def)
apply (erule valid_perm_lookup_fst_eq_snd)
apply assumption+
done
lemma perm_apply_minus: "valid_perm x \<Longrightarrow> perm_apply (map swap_pair x) a = b \<longleftrightarrow> perm_apply x b = a"
using valid_perm_add_minus[symmetric] valid_perm_minus
by (metis uminus_perm_raw_def)
lemma uminus_perm_raw_rsp[simp]:
"x \<approx> y \<Longrightarrow> map swap_pair x \<approx> map swap_pair y"
by (auto simp add: fun_eq_iff perm_apply_minus[symmetric] perm_eq_def)
lemma [quot_respect]:
"(op \<approx> ===> op \<approx>) uminus_perm_raw uminus_perm_raw"
by (auto intro!: fun_relI simp add: fun_eq_iff perm_apply_minus[symmetric] perm_eq_def)
lemma fst_snd_map_pair[simp]:
"fst ` map_pair f g ` set l = f ` fst ` set l"
"snd ` map_pair f g ` set l = g ` snd ` set l"
by (induct l) auto
lemma fst_diff[simp]:
shows "fst ` {xa \<in> set x. fst xa \<notin> fst ` set y} = fst ` set x - fst ` set y"
by auto
lemma pair_perm_apply:
"distinct (map fst x) \<Longrightarrow> (a, b) \<in> set x \<Longrightarrow> perm_apply x a = b"
by (induct x) (auto, metis fst_conv image_eqI)
lemma valid_perm_apply:
"valid_perm x \<Longrightarrow> (a, b) \<in> set x \<Longrightarrow> perm_apply x a = b"
unfolding valid_perm_def using pair_perm_apply by auto
lemma in_perm_apply:
"valid_perm x \<Longrightarrow> (a, b) \<in> set x \<Longrightarrow> a \<in> c \<Longrightarrow> b \<in> perm_apply x ` c"
by (metis imageI valid_perm_apply)
lemma snd_set_not_in_perm_apply[simp]:
assumes "valid_perm x"
shows "snd ` {xa \<in> set x. fst xa \<notin> fst ` set y} = perm_apply x ` (fst ` set x - fst ` set y)"
proof auto
fix a b
assume a: "(a, b) \<in> set x" " a \<notin> fst ` set y"
then have "a \<in> fst ` set x - fst ` set y"
by simp (metis fst_conv image_eqI)
with a show "b \<in> perm_apply x ` (fst ` set x - fst ` set y)"
by (simp add: in_perm_apply assms)
next
fix a b
assume a: "a \<notin> fst ` set y" "(a, b) \<in> set x"
then have "perm_apply x a = b"
by (simp add: valid_perm_apply assms)
with a show "perm_apply x a \<in> snd ` {xa \<in> set x. fst xa \<notin> fst ` set y}"
by (metis (lifting) CollectI fst_conv image_eqI snd_conv)
qed
lemma perm_apply_set:
"valid_perm x \<Longrightarrow> perm_apply x ` fst ` set x = fst ` set x"
by (auto simp add: valid_perm_def)
(metis (hide_lams, no_types) image_iff pair_perm_apply snd_eqD surjective_pairing)+
lemma perm_apply_outset: "a \<notin> fst ` set x \<Longrightarrow> perm_apply x a = a"
by (induct x) auto
lemma perm_apply_subset: "valid_perm x \<Longrightarrow> fst ` set x \<subseteq> s \<Longrightarrow> perm_apply x ` s = s"
apply auto
apply (case_tac [!] "xa \<in> fst ` set x")
apply (metis imageI perm_apply_set subsetD)
apply (metis perm_apply_outset)
apply (metis image_mono perm_apply_set subsetD)
by (metis imageI perm_apply_outset)
lemma valid_perm_add_raw[simp]:
assumes "valid_perm x" "valid_perm y"
shows "valid_perm (perm_add_raw x y)"
using assms
apply (simp (no_asm) add: valid_perm_def)
apply (intro conjI)
apply (auto simp add: perm_add_raw_def valid_perm_def fst_def[symmetric])[1]
apply (simp add: distinct_map inj_on_def)
apply (metis imageI snd_conv)
apply (simp add: perm_add_raw_def image_Un)
apply (simp add: image_Un[symmetric])
apply (auto simp add: perm_apply_subset valid_perm_def)
done
lemma perm_add_raw_rsp[simp]:
"x \<approx> y \<Longrightarrow> xa \<approx> ya \<Longrightarrow> perm_add_raw x xa \<approx> perm_add_raw y ya"
by (simp add: fun_eq_iff perm_add_apply perm_eq_def)
lemma [quot_respect]:
"(op \<approx> ===> op \<approx> ===> op \<approx>) perm_add_raw perm_add_raw"
by (auto intro!: fun_relI simp add: perm_add_raw_rsp)
lemma [simp]:
"a \<approx> a \<longleftrightarrow> valid_perm a"
by (simp_all add: perm_eq_def)
lemma [quot_respect]: "[] \<approx> []"
by auto
lemmas [simp] = in_respects
instantiation gperm :: (type) group_add
begin
quotient_definition "0 :: 'a gperm" is "[] :: ('a \<times> 'a) list"
quotient_definition "uminus :: 'a gperm \<Rightarrow> 'a gperm" is
"uminus_perm_raw :: ('a \<times> 'a) list \<Rightarrow> ('a \<times> 'a) list"
quotient_definition "(op +) :: 'a gperm \<Rightarrow> 'a gperm \<Rightarrow> 'a gperm" is
"perm_add_raw :: ('a \<times> 'a) list \<Rightarrow> ('a \<times> 'a) list \<Rightarrow> ('a \<times> 'a) list"
definition
minus_perm_def: "(p1::'a gperm) - p2 = p1 + - p2"
instance
apply default
unfolding minus_perm_def
by (partiality_descending, simp add: perm_add_apply perm_eq_def fun_eq_iff valid_perm_add_minus)+
end
definition "mk_perm_raw l = (if valid_perm l then l else [])"
quotient_definition "mk_perm :: ('a \<times> 'a) list \<Rightarrow> 'a gperm"
is "mk_perm_raw"
definition "dest_perm_raw p = sort [x\<leftarrow>p. fst x \<noteq> snd x]"
quotient_definition "dest_perm :: ('a :: linorder) gperm \<Rightarrow> ('a \<times> 'a) list"
is "dest_perm_raw"
lemma [quot_respect]: "(op = ===> op \<approx>) mk_perm_raw mk_perm_raw"
by (auto intro!: fun_relI simp add: mk_perm_raw_def)
lemma distinct_fst_distinct[simp]: "distinct (map fst x) \<Longrightarrow> distinct x"
by (induct x) auto
lemma perm_apply_in_set:
"a \<noteq> b \<Longrightarrow> perm_apply y a = b \<Longrightarrow> (a, b) \<in> set y"
by (induct y) (auto split: if_splits)
lemma perm_eq_not_eq_same:
"x \<approx> y \<Longrightarrow> {xa \<in> set x. fst xa \<noteq> snd xa} = {x \<in> set y. fst x \<noteq> snd x}"
unfolding perm_eq_def set_eq_iff
apply auto
apply (subgoal_tac "perm_apply x a = b")
apply (simp add: perm_apply_in_set)
apply (erule valid_perm_apply)
apply simp
apply (subgoal_tac "perm_apply y a = b")
apply (simp add: perm_apply_in_set)
apply (erule valid_perm_apply)
apply simp
done
lemma [simp]: "distinct (map fst (sort x)) = distinct (map fst x)"
by (rule len_set_eq_distinct) simp_all
lemma valid_perm_sort[simp]:
"valid_perm x \<Longrightarrow> valid_perm (sort x)"
unfolding valid_perm_def by simp
lemma same_not_in_dpr:
"valid_perm x \<Longrightarrow> (b, b) \<in> set x \<Longrightarrow> b \<notin> fst ` set (dest_perm_raw x)"
unfolding dest_perm_raw_def valid_perm_def
by auto (metis pair_perm_apply)
lemma in_set_in_dpr:
"valid_perm x \<Longrightarrow> a \<noteq> b \<Longrightarrow> (a, b) \<in> set x \<longleftrightarrow> (a, b) \<in> set (dest_perm_raw x)"
unfolding dest_perm_raw_def valid_perm_def
by simp
lemma in_set_in_dpr2:
"a \<noteq> b \<Longrightarrow> (dest_perm_raw x = dest_perm_raw y) \<Longrightarrow> valid_perm x \<Longrightarrow> valid_perm y \<Longrightarrow> (a, b) \<in> set x \<longleftrightarrow> (a, b) \<in> set y"
using in_set_in_dpr by metis
lemma in_set_in_dpr3:
"(dest_perm_raw x = dest_perm_raw y) \<Longrightarrow> valid_perm x \<Longrightarrow> valid_perm y \<Longrightarrow> perm_apply x a = perm_apply y a"
by (metis in_set_in_dpr2 pair_perm_apply perm_apply_in_set valid_perm_def)
lemma dest_perm_raw_eq[simp]:
"valid_perm x \<Longrightarrow> valid_perm y \<Longrightarrow> (dest_perm_raw x = dest_perm_raw y) = (x \<approx> y)"
apply (auto simp add: perm_eq_def)
apply (metis in_set_in_dpr3 fun_eq_iff)
unfolding dest_perm_raw_def
by (rule sorted_distinct_set_unique)
(simp_all add: distinct_filter valid_perm_def perm_eq_not_eq_same[simplified perm_eq_def, simplified])
lemma [quot_respect]:
"(op \<approx> ===> op =) dest_perm_raw dest_perm_raw"
by (auto intro!: fun_relI simp add: perm_eq_def)
lemma dest_perm_mk_perm[simp]:
"dest_perm (mk_perm xs) = sort [x\<leftarrow>mk_perm_raw xs. fst x \<noteq> snd x]"
by (partiality_descending)
(simp add: dest_perm_raw_def)
lemma valid_perm_filter_id[simp]:
"valid_perm p \<Longrightarrow> valid_perm [x\<leftarrow>p. fst x \<noteq> snd x]"
proof (simp (no_asm) add: valid_perm_def, intro conjI)
show "valid_perm p \<Longrightarrow> distinct (map fst [x\<Colon>'a \<times> 'a\<leftarrow>p . fst x \<noteq> snd x])"
by (auto simp add: distinct_map inj_on_def valid_perm_def)
assume a: "valid_perm p"
then show "fst ` {x\<Colon>'a \<times> 'a \<in> set p. fst x \<noteq> snd x} = snd ` {x\<Colon>'a \<times> 'a \<in> set p. fst x \<noteq> snd x}"
apply -
apply (frule valid_perm_distinct_snd)
apply (simp add: valid_perm_def)
apply auto
apply (subgoal_tac "a \<in> snd ` set p")
apply auto
apply (subgoal_tac "(aa, ba) \<in> {x \<in> set p. fst x \<noteq> snd x}")
apply (metis (lifting) image_eqI snd_conv)
apply (metis (lifting, mono_tags) fst_conv mem_Collect_eq snd_conv pair_perm_apply)
apply (metis fst_conv imageI)
apply (drule sym)
apply (subgoal_tac "b \<in> fst ` set p")
apply auto
apply (subgoal_tac "(aa, ba) \<in> {x \<in> set p. fst x \<noteq> snd x}")
apply (metis (lifting) image_eqI fst_conv)
apply simp
apply (metis valid_perm_add_minus valid_perm_apply valid_perm_def)
apply (metis snd_conv imageI)
done
qed
lemma valid_perm_dest_pair_raw[simp]:
assumes "valid_perm x"
shows "valid_perm (dest_perm_raw x)"
using valid_perm_filter_id valid_perm_sort assms
unfolding dest_perm_raw_def
by simp
lemma dest_perm_raw_repeat[simp]:
"dest_perm_raw (dest_perm_raw p) = dest_perm_raw p"
unfolding dest_perm_raw_def
by simp (rule sorted_sort_id[OF sorted_sort])
lemma valid_dest_perm_raw_eq[simp]:
"valid_perm p \<Longrightarrow> dest_perm_raw p \<approx> p"
"valid_perm p \<Longrightarrow> p \<approx> dest_perm_raw p"
by (simp_all add: dest_perm_raw_eq[symmetric])
lemma mk_perm_dest_perm[code abstype]:
"mk_perm (dest_perm p) = p"
by (partiality_descending)
(auto simp add: mk_perm_raw_def)
instantiation gperm :: (linorder) equal begin
definition equal_gperm_def: "equal_gperm a b \<longleftrightarrow> dest_perm a = dest_perm b"
instance
apply default
unfolding equal_gperm_def
by partiality_descending simp
end
lemma [code abstract]:
"dest_perm 0 = []"
by (partiality_descending) (simp add: dest_perm_raw_def)
lemma [code abstract]:
"dest_perm (-a) = dest_perm_raw (uminus_perm_raw (dest_perm a))"
by (partiality_descending) (auto)
lemma [code abstract]:
"dest_perm (a + b) = dest_perm_raw (perm_add_raw (dest_perm a) (dest_perm b))"
by (partiality_descending) auto
quotient_definition "gpermute :: 'a gperm \<Rightarrow> 'a \<Rightarrow> 'a"
is perm_apply
lemma [quot_respect]: "(op \<approx> ===> op =) perm_apply perm_apply"
by (auto intro!: fun_relI simp add: perm_eq_def)
lemma gpermute_zero[simp]:
"gpermute 0 x = x"
by descending simp
lemma gpermute_add[simp]:
"gpermute (p + q) x = gpermute p (gpermute q x)"
by descending (simp add: perm_add_apply)
definition [simp]:"swap_raw a b = (if a = b then [] else [(a, b), (b, a)])"
lemma [quot_respect]: "(op = ===> op = ===> op \<approx>) swap_raw swap_raw"
by (auto intro!: fun_relI simp add: valid_perm_def)
quotient_definition "gswap :: 'a \<Rightarrow> 'a \<Rightarrow> 'a gperm"
is swap_raw
lemma [code abstract]:
"dest_perm (gswap a b) = (if (a, b) \<le> (b, a) then swap_raw a b else swap_raw b a)"
by (partiality_descending) (auto simp add: dest_perm_raw_def)
lemma swap_self [simp]:
"gswap a a = 0"
by (partiality_descending, auto)
lemma [simp]: "a \<noteq> b \<Longrightarrow> valid_perm [(a, b), (b, a)]"
unfolding valid_perm_def by auto
lemma swap_cancel [simp]:
"gswap a b + gswap a b = 0"
"gswap a b + gswap b a = 0"
by (descending, auto simp add: perm_eq_def perm_add_apply)+
lemma minus_swap [simp]:
"- gswap a b = gswap a b"
by (partiality_descending, auto simp add: perm_eq_def)
lemma swap_commute:
"gswap a b = gswap b a"
by (partiality_descending, auto simp add: perm_eq_def)
lemma swap_triple:
assumes "a \<noteq> b" "c \<noteq> b"
shows "gswap a c + gswap b c + gswap a c = gswap a b"
using assms
by descending (auto simp add: perm_eq_def fun_eq_iff perm_add_apply)
lemma gpermute_gswap[simp]:
"b \<noteq> a \<Longrightarrow> gpermute (gswap a b) b = a"
"a \<noteq> b \<Longrightarrow> gpermute (gswap a b) a = b"
"c \<noteq> b \<Longrightarrow> c \<noteq> a \<Longrightarrow> gpermute (gswap a b) c = c"
by (descending, auto)+
lemma gperm_eq:
"(p = q) = (\<forall>a. gpermute p a = gpermute q a)"
by (partiality_descending) (auto simp add: perm_eq_def)
lemma finite_gpermute_neq:
"finite {a. gpermute p a \<noteq> a}"
apply descending
apply (rule_tac B="fst ` set p" in finite_subset)
apply auto
by (metis perm_apply_outset)
end