Nominal/GPerm.thy
changeset 3139 e05c033d69c1
child 3173 9876d73adb2b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/GPerm.thy	Mon Mar 26 16:28:17 2012 +0200
@@ -0,0 +1,495 @@
+(* General executable permutations *)
+
+theory GPerm
+imports
+  "~~/src/HOL/Library/Quotient_Syntax"
+  "~~/src/HOL/Library/Product_ord"
+  "~~/src/HOL/Library/List_lexord"
+begin
+
+definition perm_apply where
+  "perm_apply l e = (case [a\<leftarrow>l . fst a = e] of [] \<Rightarrow> e | x # xa \<Rightarrow> snd x)"
+
+lemma perm_apply_simps[simp]:
+  "perm_apply (h # t) e = (if fst h = e then snd h else perm_apply t e)"
+  "perm_apply [] e = e"
+  by (auto simp add: perm_apply_def)
+
+definition valid_perm where
+  "valid_perm p \<longleftrightarrow> distinct (map fst p) \<and> fst ` set p = snd ` set p"
+
+lemma valid_perm_zero[simp]:
+  "valid_perm []"
+  by (simp add: valid_perm_def)
+
+lemma length_eq_card_distinct:
+  "length l = card (set l) \<longleftrightarrow> distinct l"
+  using card_distinct distinct_card by force
+
+lemma len_set_eq_distinct:
+  assumes "length l = length m" "set l = set m"
+  shows "distinct l = distinct m"
+  using assms
+  by (simp add: length_eq_card_distinct[symmetric])
+
+lemma valid_perm_distinct_snd: "valid_perm a \<Longrightarrow> distinct (map snd a)"
+  by (metis valid_perm_def image_set length_map len_set_eq_distinct)
+
+definition
+  perm_eq :: "('a \<times> 'a) list \<Rightarrow> ('a \<times> 'a) list \<Rightarrow> bool" (infix "\<approx>" 50)
+where
+  "x \<approx> y \<longleftrightarrow> valid_perm x \<and> valid_perm y \<and> (perm_apply x = perm_apply y)"
+
+lemma perm_eq_sym[sym]:
+  "x \<approx> y \<Longrightarrow> y \<approx> x"
+  by (auto simp add: perm_eq_def)
+
+lemma perm_eq_equivp:
+  "part_equivp perm_eq"
+  by (auto intro!: part_equivpI sympI transpI exI[of _ "[]"] simp add: perm_eq_def)
+
+quotient_type
+  'a gperm = "('a \<times> 'a) list" / partial: "perm_eq"
+  by (rule perm_eq_equivp)
+
+definition perm_add_raw where
+  "perm_add_raw p q = map (map_pair id (perm_apply p)) q @ [a\<leftarrow>p. fst a \<notin> fst ` set q]"
+
+lemma perm_apply_del[simp]:
+  "e \<noteq> b \<Longrightarrow> perm_apply [a\<leftarrow>l. fst a \<noteq> b] e = perm_apply l e"
+  "e \<noteq> b \<Longrightarrow> e \<noteq> c \<Longrightarrow> perm_apply [a\<leftarrow>l . fst a \<noteq> b \<and> fst a \<noteq> c] e = perm_apply l e"
+  by (induct l) auto
+
+lemma perm_apply_appendl:
+  "perm_apply a e = perm_apply b e \<Longrightarrow> perm_apply (c @ a) e = perm_apply (c @ b) e"
+  by (induct c) auto
+
+lemma perm_apply_filterP:
+  "b \<noteq> e \<Longrightarrow> perm_apply [a\<leftarrow>l . fst a \<noteq> b \<and> P a] e = perm_apply [a\<leftarrow>l . P a] e"
+  by (induct l) auto
+
+lemma perm_add_apply:
+  shows "perm_apply (perm_add_raw p q) e = perm_apply p (perm_apply q e)"
+  by (rule sym, induct q)
+     (auto simp add: perm_add_raw_def perm_apply_filterP intro!: perm_apply_appendl)
+
+definition swap_pair where
+  "swap_pair a = (snd a, fst a)"
+
+definition uminus_perm_raw where
+  [simp]: "uminus_perm_raw = map swap_pair"
+
+lemma map_fst_minus_perm[simp]:
+  "map fst (uminus_perm_raw x) = map snd x"
+  "map snd (uminus_perm_raw x) = map fst x"
+  by (induct x) (auto simp add: swap_pair_def)
+
+lemma fst_snd_set_minus_perm[simp]:
+  "fst ` set (uminus_perm_raw x) = snd ` set x"
+  "snd ` set (uminus_perm_raw x) = fst ` set x"
+  by (induct x) (auto simp add: swap_pair_def)
+
+lemma fst_snd_swap_pair[simp]:
+  "fst (swap_pair x) = snd x"
+  "snd (swap_pair x) = fst x"
+  by (auto simp add: swap_pair_def)
+
+lemma fst_snd_swap_pair_set[simp]:
+  "fst ` swap_pair ` set l = snd ` set l"
+  "snd ` swap_pair ` set l = fst ` set l"
+  by (induct l) (auto simp add: swap_pair_def)
+
+lemma valid_perm_minus[simp]:
+  assumes "valid_perm x"
+  shows "valid_perm (map swap_pair x)"
+  using assms unfolding valid_perm_def
+  by (simp add: valid_perm_distinct_snd[OF assms] o_def)
+
+lemma swap_pair_id[simp]:
+  "swap_pair (swap_pair x) = x"
+  unfolding swap_pair_def by simp
+
+lemma perm_apply_minus_minus[simp]:
+  "perm_apply (uminus_perm_raw (uminus_perm_raw x)) = perm_apply x"
+  by (simp add: o_def)
+
+lemma filter_eq_nil:
+  "[a\<leftarrow>a. fst a = e] = [] \<longleftrightarrow> e \<notin> fst ` set a"
+  "[a\<leftarrow>a. snd a = e] = [] \<longleftrightarrow> e \<notin> snd ` set a"
+  by (induct a) auto
+
+lemma filter_rev_eq_nil: "[a\<leftarrow>map swap_pair a. fst a = e] = [] \<longleftrightarrow> e \<notin> snd ` set a"
+  by (induct a) (auto simp add: swap_pair_def)
+
+lemma filter_fst_eq:
+  "[a\<leftarrow>a . fst a = e] = (l, r) # list \<Longrightarrow> l = e"
+  "[a\<leftarrow>a . snd a = e] = (l, r) # list \<Longrightarrow> r = e"
+  by (drule filter_eq_ConsD, auto)+
+
+lemma filter_map_swap_pair:
+  "[a\<leftarrow>map swap_pair a. fst a = e] = map swap_pair [a\<leftarrow>a. snd a = e]"
+  by (induct a) auto
+
+lemma forget_tl:
+  "[a\<leftarrow>l . P a] = a # b \<Longrightarrow> a \<in> set l"
+  by (metis Cons_eq_filter_iff in_set_conv_decomp)
+
+lemma valid_perm_lookup_fst_eq_snd:
+  "[a\<leftarrow>l . fst a = f] = (f, s) # l1 \<Longrightarrow> [a\<leftarrow>l . snd a = s] = (f2, s) # l2 \<Longrightarrow> valid_perm l \<Longrightarrow> f2 = f"
+  apply (drule forget_tl valid_perm_distinct_snd)+
+  apply (case_tac "f2 = f")
+  apply (auto simp add: in_set_conv_nth swap_pair_def)
+  apply (case_tac "i = ia")
+  apply auto
+  by (metis length_map nth_eq_iff_index_eq nth_map snd_conv)
+
+lemma valid_perm_add_minus: "valid_perm a \<Longrightarrow> perm_apply (map swap_pair a) (perm_apply a e) = e"
+  apply (auto simp add: filter_map_swap_pair filter_eq_nil filter_rev_eq_nil perm_apply_def split: list.split)
+  apply (metis filter_eq_nil(2) neq_Nil_conv valid_perm_def)
+  apply (metis hd.simps hd_in_set image_eqI list.simps(2) member_project project_set snd_conv)
+  apply (frule filter_fst_eq(1))
+  apply (frule filter_fst_eq(2))
+  apply (auto simp add: swap_pair_def)
+  apply (erule valid_perm_lookup_fst_eq_snd)
+  apply assumption+
+  done
+
+lemma perm_apply_minus: "valid_perm x \<Longrightarrow> perm_apply (map swap_pair x) a = b \<longleftrightarrow> perm_apply x b = a"
+  using valid_perm_add_minus[symmetric] valid_perm_minus
+  by (metis uminus_perm_raw_def)
+
+lemma uminus_perm_raw_rsp[simp]:
+  "x \<approx> y \<Longrightarrow> map swap_pair x \<approx> map swap_pair y"
+  by (auto simp add: fun_eq_iff perm_apply_minus[symmetric] perm_eq_def)
+
+lemma [quot_respect]:
+  "(op \<approx> ===> op \<approx>) uminus_perm_raw uminus_perm_raw"
+  by (auto intro!: fun_relI simp add: fun_eq_iff perm_apply_minus[symmetric] perm_eq_def)
+
+lemma fst_snd_map_pair[simp]:
+  "fst ` map_pair f g ` set l = f ` fst ` set l"
+  "snd ` map_pair f g ` set l = g ` snd ` set l"
+  by (induct l) auto
+
+lemma fst_diff[simp]:
+  shows "fst ` {xa \<in> set x. fst xa \<notin> fst ` set y} = fst ` set x - fst ` set y"
+  by auto
+
+lemma pair_perm_apply:
+  "distinct (map fst x) \<Longrightarrow> (a, b) \<in> set x \<Longrightarrow> perm_apply x a = b"
+  by (induct x) (auto, metis fst_conv image_eqI)
+
+lemma valid_perm_apply:
+  "valid_perm x \<Longrightarrow> (a, b) \<in> set x \<Longrightarrow> perm_apply x a = b"
+  unfolding valid_perm_def using pair_perm_apply by auto
+
+lemma in_perm_apply:
+  "valid_perm x \<Longrightarrow> (a, b) \<in> set x \<Longrightarrow> a \<in> c \<Longrightarrow> b \<in> perm_apply x ` c"
+  by (metis imageI valid_perm_apply)
+
+lemma snd_set_not_in_perm_apply[simp]:
+  assumes "valid_perm x"
+  shows "snd ` {xa \<in> set x. fst xa \<notin> fst ` set y} = perm_apply x ` (fst ` set x - fst ` set y)"
+proof auto
+  fix a b
+  assume a: "(a, b) \<in> set x" " a \<notin> fst ` set y"
+  then have "a \<in> fst ` set x - fst ` set y"
+    by simp (metis fst_conv image_eqI)
+  with a show "b \<in> perm_apply x ` (fst ` set x - fst ` set y)"
+    by (simp add: in_perm_apply assms)
+next
+  fix a b
+  assume a: "a \<notin> fst ` set y" "(a, b) \<in> set x"
+  then have "perm_apply x a = b"
+    by (simp add: valid_perm_apply assms)
+  with a show "perm_apply x a \<in> snd ` {xa \<in> set x. fst xa \<notin> fst ` set y}"
+    by (metis (lifting) CollectI fst_conv image_eqI snd_conv)
+qed
+
+lemma perm_apply_set:
+  "valid_perm x \<Longrightarrow> perm_apply x ` fst ` set x = fst ` set x"
+  by (auto simp add: valid_perm_def)
+     (metis (hide_lams, no_types) image_iff pair_perm_apply snd_eqD surjective_pairing)+
+
+lemma perm_apply_outset: "a \<notin> fst ` set x \<Longrightarrow> perm_apply x a = a"
+  by (induct x) auto
+
+lemma perm_apply_subset: "valid_perm x \<Longrightarrow> fst ` set x \<subseteq> s \<Longrightarrow> perm_apply x ` s = s"
+  apply auto
+  apply (case_tac [!] "xa \<in> fst ` set x")
+  apply (metis imageI perm_apply_set subsetD)
+  apply (metis perm_apply_outset)
+  apply (metis image_mono perm_apply_set subsetD)
+  by (metis imageI perm_apply_outset)
+
+lemma valid_perm_add_raw[simp]:
+  assumes "valid_perm x" "valid_perm y"
+  shows "valid_perm (perm_add_raw x y)"
+  using assms
+  apply (simp (no_asm) add: valid_perm_def)
+  apply (intro conjI)
+  apply (auto simp add: perm_add_raw_def valid_perm_def fst_def[symmetric])[1]
+  apply (simp add: distinct_map inj_on_def)
+  apply (metis imageI snd_conv)
+  apply (simp add: perm_add_raw_def image_Un)
+  apply (simp add: image_Un[symmetric])
+  apply (auto simp add: perm_apply_subset valid_perm_def)
+  done
+
+lemma perm_add_raw_rsp[simp]:
+  "x \<approx> y \<Longrightarrow> xa \<approx> ya \<Longrightarrow> perm_add_raw x xa \<approx> perm_add_raw y ya"
+  by (simp add: fun_eq_iff perm_add_apply perm_eq_def)
+
+lemma [quot_respect]:
+  "(op \<approx> ===> op \<approx> ===> op \<approx>) perm_add_raw perm_add_raw"
+  by (auto intro!: fun_relI simp add: perm_add_raw_rsp)
+
+lemma [simp]:
+  "a \<approx> a \<longleftrightarrow> valid_perm a"
+  by (simp_all add: perm_eq_def)
+
+lemma [quot_respect]: "[] \<approx> []"
+  by auto
+
+lemmas [simp] = in_respects
+
+instantiation gperm :: (type) group_add
+begin
+
+quotient_definition "0 :: 'a gperm" is "[] :: ('a \<times> 'a) list"
+
+quotient_definition "uminus :: 'a gperm \<Rightarrow> 'a gperm" is
+  "uminus_perm_raw :: ('a \<times> 'a) list \<Rightarrow> ('a \<times> 'a) list"
+
+quotient_definition "(op +) :: 'a gperm \<Rightarrow> 'a gperm \<Rightarrow> 'a gperm" is
+  "perm_add_raw :: ('a \<times> 'a) list \<Rightarrow> ('a \<times> 'a) list \<Rightarrow> ('a \<times> 'a) list"
+
+definition
+  minus_perm_def: "(p1::'a gperm) - p2 = p1 + - p2"
+
+instance
+  apply default
+  unfolding minus_perm_def
+  by (partiality_descending, simp add: perm_add_apply perm_eq_def fun_eq_iff valid_perm_add_minus)+
+
+end
+
+definition "mk_perm_raw l = (if valid_perm l then l else [])"
+
+quotient_definition "mk_perm :: ('a \<times> 'a) list \<Rightarrow> 'a gperm"
+  is "mk_perm_raw"
+
+definition "dest_perm_raw p = sort [x\<leftarrow>p. fst x \<noteq> snd x]"
+
+quotient_definition "dest_perm :: ('a :: linorder) gperm \<Rightarrow> ('a \<times> 'a) list"
+  is "dest_perm_raw"
+
+lemma [quot_respect]: "(op = ===> op \<approx>) mk_perm_raw mk_perm_raw"
+  by (auto intro!: fun_relI simp add: mk_perm_raw_def)
+
+lemma distinct_fst_distinct[simp]: "distinct (map fst x) \<Longrightarrow> distinct x"
+  by (induct x) auto
+
+lemma perm_apply_in_set:
+  "a \<noteq> b \<Longrightarrow> perm_apply y a = b \<Longrightarrow> (a, b) \<in> set y"
+  by (induct y) (auto split: if_splits)
+
+lemma perm_eq_not_eq_same:
+  "x \<approx> y \<Longrightarrow> {xa \<in> set x. fst xa \<noteq> snd xa} = {x \<in> set y. fst x \<noteq> snd x}"
+  unfolding perm_eq_def set_eq_iff
+  apply auto
+  apply (subgoal_tac "perm_apply x a = b")
+  apply (simp add: perm_apply_in_set)
+  apply (erule valid_perm_apply)
+  apply simp
+  apply (subgoal_tac "perm_apply y a = b")
+  apply (simp add: perm_apply_in_set)
+  apply (erule valid_perm_apply)
+  apply simp
+  done
+
+lemma [simp]: "distinct (map fst (sort x)) = distinct (map fst x)"
+  by (rule len_set_eq_distinct) simp_all
+
+lemma valid_perm_sort[simp]:
+  "valid_perm x \<Longrightarrow> valid_perm (sort x)"
+  unfolding valid_perm_def by simp
+
+lemma same_not_in_dpr:
+  "valid_perm x \<Longrightarrow> (b, b) \<in> set x \<Longrightarrow> b \<notin> fst ` set (dest_perm_raw x)"
+  unfolding dest_perm_raw_def valid_perm_def
+  by auto (metis pair_perm_apply)
+
+lemma in_set_in_dpr:
+  "valid_perm x \<Longrightarrow> a \<noteq> b \<Longrightarrow> (a, b) \<in> set x \<longleftrightarrow> (a, b) \<in> set (dest_perm_raw x)"
+  unfolding dest_perm_raw_def valid_perm_def
+  by simp
+
+lemma in_set_in_dpr2:
+  "a \<noteq> b \<Longrightarrow> (dest_perm_raw x = dest_perm_raw y) \<Longrightarrow> valid_perm x \<Longrightarrow> valid_perm y \<Longrightarrow> (a, b) \<in> set x \<longleftrightarrow> (a, b) \<in> set y"
+  using in_set_in_dpr by metis
+
+lemma in_set_in_dpr3:
+  "(dest_perm_raw x = dest_perm_raw y) \<Longrightarrow> valid_perm x \<Longrightarrow> valid_perm y \<Longrightarrow> perm_apply x a = perm_apply y a"
+  by (metis in_set_in_dpr2 pair_perm_apply perm_apply_in_set valid_perm_def)
+
+lemma dest_perm_raw_eq[simp]:
+  "valid_perm x \<Longrightarrow> valid_perm y \<Longrightarrow> (dest_perm_raw x = dest_perm_raw y) = (x \<approx> y)"
+  apply (auto simp add: perm_eq_def)
+  apply (metis in_set_in_dpr3 fun_eq_iff)
+  unfolding dest_perm_raw_def
+  by (rule sorted_distinct_set_unique)
+     (simp_all add: distinct_filter valid_perm_def perm_eq_not_eq_same[simplified perm_eq_def, simplified])
+
+lemma [quot_respect]:
+  "(op \<approx> ===> op =) dest_perm_raw dest_perm_raw"
+  by (auto intro!: fun_relI simp add: perm_eq_def)
+
+lemma dest_perm_mk_perm[simp]:
+  "dest_perm (mk_perm xs) = sort [x\<leftarrow>mk_perm_raw xs. fst x \<noteq> snd x]"
+  by (partiality_descending)
+     (simp add: dest_perm_raw_def)
+
+lemma valid_perm_filter_id[simp]:
+  "valid_perm p \<Longrightarrow> valid_perm [x\<leftarrow>p. fst x \<noteq> snd x]"
+proof (simp (no_asm) add: valid_perm_def, intro conjI)
+  show "valid_perm p \<Longrightarrow> distinct (map fst [x\<Colon>'a \<times> 'a\<leftarrow>p . fst x \<noteq> snd x])"
+    by (auto simp add: distinct_map inj_on_def valid_perm_def)
+  assume a: "valid_perm p"
+  then show "fst ` {x\<Colon>'a \<times> 'a \<in> set p. fst x \<noteq> snd x} = snd ` {x\<Colon>'a \<times> 'a \<in> set p. fst x \<noteq> snd x}"
+    apply -
+    apply (frule valid_perm_distinct_snd)
+    apply (simp add: valid_perm_def)
+    apply auto
+    apply (subgoal_tac "a \<in> snd ` set p")
+    apply auto
+    apply (subgoal_tac "(aa, ba) \<in> {x \<in> set p. fst x \<noteq> snd x}")
+    apply (metis (lifting) image_eqI snd_conv)
+    apply (metis (lifting, mono_tags) fst_conv mem_Collect_eq snd_conv pair_perm_apply)
+    apply (metis fst_conv imageI)
+    apply (drule sym)
+    apply (subgoal_tac "b \<in> fst ` set p")
+    apply auto
+    apply (subgoal_tac "(aa, ba) \<in> {x \<in> set p. fst x \<noteq> snd x}")
+    apply (metis (lifting) image_eqI fst_conv)
+    apply simp
+    apply (metis valid_perm_add_minus valid_perm_apply valid_perm_def)
+    apply (metis snd_conv imageI)
+    done
+qed
+
+lemma valid_perm_dest_pair_raw[simp]:
+  assumes "valid_perm x"
+  shows "valid_perm (dest_perm_raw x)"
+  using valid_perm_filter_id valid_perm_sort assms
+  unfolding dest_perm_raw_def
+  by simp
+
+lemma dest_perm_raw_repeat[simp]:
+  "dest_perm_raw (dest_perm_raw p) = dest_perm_raw p"
+  unfolding dest_perm_raw_def
+  by simp (rule sorted_sort_id[OF sorted_sort])
+
+lemma valid_dest_perm_raw_eq[simp]:
+  "valid_perm p \<Longrightarrow> dest_perm_raw p \<approx> p"
+  "valid_perm p \<Longrightarrow> p \<approx> dest_perm_raw p"
+  by (simp_all add: dest_perm_raw_eq[symmetric])
+
+lemma mk_perm_dest_perm[code abstype]:
+  "mk_perm (dest_perm p) = p"
+  by (partiality_descending)
+     (auto simp add: mk_perm_raw_def)
+
+instantiation gperm :: (linorder) equal begin
+
+definition equal_gperm_def: "equal_gperm a b \<longleftrightarrow> dest_perm a = dest_perm b"
+
+instance
+  apply default
+  unfolding equal_gperm_def
+  by partiality_descending simp
+
+end
+
+lemma [code abstract]:
+  "dest_perm 0 = []"
+  by (partiality_descending) (simp add: dest_perm_raw_def)
+
+lemma [code abstract]:
+  "dest_perm (-a) = dest_perm_raw (uminus_perm_raw (dest_perm a))"
+  by (partiality_descending) (auto)
+
+lemma [code abstract]:
+  "dest_perm (a + b) = dest_perm_raw (perm_add_raw (dest_perm a) (dest_perm b))"
+  by (partiality_descending) auto
+
+quotient_definition "gpermute :: 'a gperm \<Rightarrow> 'a \<Rightarrow> 'a"
+is perm_apply
+
+lemma [quot_respect]: "(op \<approx> ===> op =) perm_apply perm_apply"
+  by (auto intro!: fun_relI simp add: perm_eq_def)
+
+lemma gpermute_zero[simp]:
+  "gpermute 0 x = x"
+  by descending simp
+
+lemma gpermute_add[simp]:
+  "gpermute (p + q) x = gpermute p (gpermute q x)"
+  by descending (simp add: perm_add_apply)
+
+definition [simp]:"swap_raw a b = (if a = b then [] else [(a, b), (b, a)])"
+
+lemma [quot_respect]: "(op = ===> op = ===> op \<approx>) swap_raw swap_raw"
+  by (auto intro!: fun_relI simp add: valid_perm_def)
+
+quotient_definition "gswap :: 'a \<Rightarrow> 'a \<Rightarrow> 'a gperm"
+is swap_raw
+
+lemma [code abstract]:
+  "dest_perm (gswap a b) = (if (a, b) \<le> (b, a) then swap_raw a b else swap_raw b a)"
+  by (partiality_descending) (auto simp add: dest_perm_raw_def)
+
+lemma swap_self [simp]:
+  "gswap a a = 0"
+  by (partiality_descending, auto)
+
+lemma [simp]: "a \<noteq> b \<Longrightarrow> valid_perm [(a, b), (b, a)]"
+  unfolding valid_perm_def by auto
+
+lemma swap_cancel [simp]:
+  "gswap a b + gswap a b = 0"
+  "gswap a b + gswap b a = 0"
+  by (descending, auto simp add: perm_eq_def perm_add_apply)+
+
+lemma minus_swap [simp]:
+  "- gswap a b = gswap a b"
+  by (partiality_descending, auto simp add: perm_eq_def)
+
+lemma swap_commute:
+  "gswap a b = gswap b a"
+  by (partiality_descending, auto simp add: perm_eq_def)
+
+lemma swap_triple:
+  assumes "a \<noteq> b" "c \<noteq> b"
+  shows "gswap a c + gswap b c + gswap a c = gswap a b"
+  using assms
+  by descending (auto simp add: perm_eq_def fun_eq_iff perm_add_apply)
+
+lemma gpermute_gswap[simp]:
+  "b \<noteq> a \<Longrightarrow> gpermute (gswap a b) b = a"
+  "a \<noteq> b \<Longrightarrow> gpermute (gswap a b) a = b"
+  "c \<noteq> b \<Longrightarrow> c \<noteq> a \<Longrightarrow> gpermute (gswap a b) c = c"
+  by (descending, auto)+
+
+lemma gperm_eq:
+  "(p = q) = (\<forall>a. gpermute p a = gpermute q a)"
+  by (partiality_descending) (auto simp add: perm_eq_def)
+
+lemma finite_gpermute_neq:
+  "finite {a. gpermute p a \<noteq> a}"
+  apply descending
+  apply (rule_tac B="fst ` set p" in finite_subset)
+  apply auto
+  by (metis perm_apply_outset)
+
+end