(* Title: nominal_dt_rawfuns.ML
Author: Cezary Kaliszyk
Author: Christian Urban
Definitions of the raw fv, fv_bn and permute functions.
*)
signature NOMINAL_DT_RAWFUNS =
sig
(* info of raw datatypes *)
type dt_info = string list * binding * mixfix * ((binding * typ list * mixfix) list) list
(* info of raw binding functions *)
type bn_info = term * int * (int * term option) list list
(* binding modes and binding clauses *)
datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list
val is_atom: Proof.context -> typ -> bool
val is_atom_set: Proof.context -> typ -> bool
val is_atom_fset: Proof.context -> typ -> bool
val is_atom_list: Proof.context -> typ -> bool
val mk_atom_set: term -> term
val mk_atom_fset: term -> term
val setify: Proof.context -> term -> term
val listify: Proof.context -> term -> term
(* FIXME: should be here - currently in Nominal2.thy
val define_raw_bns: string list -> dt_info -> (binding * typ option * mixfix) list ->
(Attrib.binding * term) list -> thm list -> thm list -> local_theory ->
(term list * thm list * bn_info list * thm list * local_theory)
*)
val define_raw_fvs: string list -> typ list -> cns_info list -> bn_info list -> bclause list list list ->
thm list -> thm list -> Proof.context -> term list * term list * thm list * thm list * local_theory
val define_raw_bn_perms: typ list -> bn_info list -> cns_info list -> thm list -> thm list ->
local_theory -> (term list * thm list * local_theory)
val raw_prove_eqvt: term list -> thm list -> thm list -> Proof.context -> thm list
val define_raw_perms: string list -> typ list -> (string * sort) list -> term list -> thm ->
local_theory -> (term list * thm list * thm list) * local_theory
end
structure Nominal_Dt_RawFuns: NOMINAL_DT_RAWFUNS =
struct
(* string list - type variables of a datatype
binding - name of the datatype
mixfix - its mixfix
(binding * typ list * mixfix) list - datatype constructors of the type
*)
type dt_info = string list * binding * mixfix * ((binding * typ list * mixfix) list) list
(* term - is constant of the bn-function
int - is datatype number over which the bn-function is defined
int * term option - is number of the corresponding argument with possibly
recursive call with bn-function term
*)
type bn_info = term * int * (int * term option) list list
datatype bmode = Lst | Res | Set
datatype bclause = BC of bmode * (term option * int) list * int list
fun lookup xs x = the (AList.lookup (op=) xs x)
(* testing for concrete atom types *)
fun is_atom ctxt ty =
Sign.of_sort (ProofContext.theory_of ctxt) (ty, @{sort at_base})
fun is_atom_set ctxt (Type ("fun", [t, @{typ bool}])) = is_atom ctxt t
| is_atom_set _ _ = false;
fun is_atom_fset ctxt (Type (@{type_name "fset"}, [t])) = is_atom ctxt t
| is_atom_fset _ _ = false;
fun is_atom_list ctxt (Type (@{type_name "list"}, [t])) = is_atom ctxt t
| is_atom_list _ _ = false
(* functions for producing sets, fsets and lists of general atom type
out from concrete atom types *)
fun mk_atom_set t =
let
val ty = fastype_of t;
val atom_ty = HOLogic.dest_setT ty --> @{typ "atom"};
val img_ty = atom_ty --> ty --> @{typ "atom set"};
in
Const (@{const_name image}, img_ty) $ mk_atom_ty atom_ty t
end
fun dest_fsetT (Type (@{type_name fset}, [T])) = T
| dest_fsetT T = raise TYPE ("dest_fsetT: fset type expected", [T], []);
fun mk_atom_fset t =
let
val ty = fastype_of t;
val atom_ty = dest_fsetT ty
val fmap_ty = (atom_ty --> @{typ atom}) --> ty --> @{typ "atom fset"};
val fset = @{term "fset :: atom fset => atom set"}
in
fset $ (Const (@{const_name map_fset}, fmap_ty) $ (atom_const atom_ty) $ t)
end
fun mk_atom_list t =
let
val ty = fastype_of t
val atom_ty = dest_listT ty
val map_ty = (atom_ty --> @{typ atom}) --> ty --> @{typ "atom list"}
in
Const (@{const_name map}, map_ty) $ (atom_const atom_ty) $ t
end
(* functions that coerces singletons, sets and fsets of concrete atoms
into sets of general atoms *)
fun setify ctxt t =
let
val ty = fastype_of t;
in
if is_atom ctxt ty
then HOLogic.mk_set @{typ atom} [mk_atom t]
else if is_atom_set ctxt ty
then mk_atom_set t
else if is_atom_fset ctxt ty
then mk_atom_fset t
else raise TERM ("setify", [t])
end
(* functions that coerces singletons and lists of concrete atoms
into lists of general atoms *)
fun listify ctxt t =
let
val ty = fastype_of t;
in
if is_atom ctxt ty
then HOLogic.mk_list @{typ atom} [mk_atom t]
else if is_atom_list ctxt ty
then mk_atom_list t
else raise TERM ("listify", [t])
end
(** functions that construct the equations for fv and fv_bn **)
fun mk_fv_rhs lthy fv_map fv_bn_map args (BC (bmode, binders, bodies)) =
let
fun mk_fv_body fv_map args i =
let
val arg = nth args i
val ty = fastype_of arg
in
case AList.lookup (op=) fv_map ty of
NONE => mk_supp arg
| SOME fv => fv $ arg
end
fun mk_fv_binder lthy fv_bn_map args binders =
let
fun bind_set lthy args (NONE, i) = (setify lthy (nth args i), @{term "{}::atom set"})
| bind_set _ args (SOME bn, i) = (bn $ (nth args i),
if member (op=) bodies i then @{term "{}::atom set"}
else lookup fv_bn_map bn $ (nth args i))
fun bind_lst lthy args (NONE, i) = (listify lthy (nth args i), @{term "[]::atom list"})
| bind_lst _ args (SOME bn, i) = (bn $ (nth args i),
if member (op=) bodies i then @{term "[]::atom list"}
else lookup fv_bn_map bn $ (nth args i))
val (combine_fn, bind_fn) =
case bmode of
Lst => (fold_append, bind_lst)
| Set => (fold_union, bind_set)
| Res => (fold_union, bind_set)
in
binders
|> map (bind_fn lthy args)
|> split_list
|> pairself combine_fn
end
val t1 = map (mk_fv_body fv_map args) bodies
val (t2, t3) = mk_fv_binder lthy fv_bn_map args binders
in
mk_union (mk_diff (fold_union t1, to_set t2), to_set t3)
end
(* in case of fv_bn we have to treat the case special, where an
"empty" binding clause is given *)
fun mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args bclause =
let
fun mk_fv_bn_body i =
let
val arg = nth args i
val ty = fastype_of arg
in
case AList.lookup (op=) bn_args i of
NONE => (case (AList.lookup (op=) fv_map ty) of
NONE => mk_supp arg
| SOME fv => fv $ arg)
| SOME (NONE) => @{term "{}::atom set"}
| SOME (SOME bn) => lookup fv_bn_map bn $ arg
end
in
case bclause of
BC (_, [], bodies) => fold_union (map mk_fv_bn_body bodies)
| _ => mk_fv_rhs lthy fv_map fv_bn_map args bclause
end
fun mk_fv_eq lthy fv_map fv_bn_map (constr, ty, arg_tys, _) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val fv = lookup fv_map ty
val lhs = fv $ list_comb (constr, args)
val rhs_trms = map (mk_fv_rhs lthy fv_map fv_bn_map args) bclauses
val rhs = fold_union rhs_trms
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map (bn_args, (constr, _, arg_tys, _)) bclauses =
let
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val fv_bn = lookup fv_bn_map bn_trm
val lhs = fv_bn $ list_comb (constr, args)
val rhs_trms = map (mk_fv_bn_rhs lthy fv_map fv_bn_map bn_args args) bclauses
val rhs = fold_union rhs_trms
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun mk_fv_bn_eqs lthy fv_map fv_bn_map constrs_info bclausesss (bn_trm, bn_n, bn_argss) =
let
val nth_constrs_info = nth constrs_info bn_n
val nth_bclausess = nth bclausesss bn_n
in
map2 (mk_fv_bn_eq lthy bn_trm fv_map fv_bn_map) (bn_argss ~~ nth_constrs_info) nth_bclausess
end
fun define_raw_fvs raw_full_ty_names raw_tys cns_info bn_info bclausesss constr_thms size_simps lthy =
let
val fv_names = map (prefix "fv_" o Long_Name.base_name) raw_full_ty_names
val fv_tys = map (fn ty => ty --> @{typ "atom set"}) raw_tys
val fv_frees = map Free (fv_names ~~ fv_tys);
val fv_map = raw_tys ~~ fv_frees
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
val fv_bn_names = map (prefix "fv_") bn_names
val fv_bn_arg_tys = map (nth raw_tys) bn_tys
val fv_bn_tys = map (fn ty => ty --> @{typ "atom set"}) fv_bn_arg_tys
val fv_bn_frees = map Free (fv_bn_names ~~ fv_bn_tys)
val fv_bn_map = bns ~~ fv_bn_frees
val fv_eqs = map2 (map2 (mk_fv_eq lthy fv_map fv_bn_map)) cns_info bclausesss
val fv_bn_eqs = map (mk_fv_bn_eqs lthy fv_map fv_bn_map cns_info bclausesss) bn_info
val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) (fv_names @ fv_bn_names)
val all_fun_eqs = map (pair Attrib.empty_binding) (flat fv_eqs @ flat fv_bn_eqs)
val (_, lthy') = Function.add_function all_fun_names all_fun_eqs
Function_Common.default_config (pat_completeness_simp constr_thms) lthy
val (info, lthy'') = prove_termination size_simps (Local_Theory.restore lthy')
val {fs, simps, inducts, ...} = info;
val morphism = ProofContext.export_morphism lthy'' lthy
val simps_exp = map (Morphism.thm morphism) (the simps)
val inducts_exp = map (Morphism.thm morphism) (the inducts)
val (fvs', fv_bns') = chop (length fv_frees) fs
in
(fvs', fv_bns', simps_exp, inducts_exp, lthy'')
end
(** definition of raw permute_bn functions **)
fun mk_perm_bn_eq_rhs p perm_bn_map bn_args (i, arg) =
case AList.lookup (op=) bn_args i of
NONE => arg
| SOME (NONE) => mk_perm p arg
| SOME (SOME bn) => (lookup perm_bn_map bn) $ p $ arg
fun mk_perm_bn_eq lthy bn_trm perm_bn_map bn_args (constr, _, arg_tys, _) =
let
val p = Free ("p", @{typ perm})
val arg_names = Datatype_Prop.make_tnames arg_tys
val args = map Free (arg_names ~~ arg_tys)
val perm_bn = lookup perm_bn_map bn_trm
val lhs = perm_bn $ p $ list_comb (constr, args)
val rhs = list_comb (constr, map_index (mk_perm_bn_eq_rhs p perm_bn_map bn_args) args)
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun mk_perm_bn_eqs lthy perm_bn_map cns_info (bn_trm, bn_n, bn_argss) =
let
val nth_cns_info = nth cns_info bn_n
in
map2 (mk_perm_bn_eq lthy bn_trm perm_bn_map) bn_argss nth_cns_info
end
fun define_raw_bn_perms raw_tys bn_info cns_info cns_thms size_thms lthy =
if null bn_info
then ([], [], lthy)
else
let
val (bns, bn_tys) = split_list (map (fn (bn, i, _) => (bn, i)) bn_info)
val bn_names = map (fn bn => Long_Name.base_name (fst (dest_Const bn))) bns
val perm_bn_names = map (prefix "permute_") bn_names
val perm_bn_arg_tys = map (nth raw_tys) bn_tys
val perm_bn_tys = map (fn ty => @{typ "perm"} --> ty --> ty) perm_bn_arg_tys
val perm_bn_frees = map Free (perm_bn_names ~~ perm_bn_tys)
val perm_bn_map = bns ~~ perm_bn_frees
val perm_bn_eqs = map (mk_perm_bn_eqs lthy perm_bn_map cns_info) bn_info
val all_fun_names = map (fn s => (Binding.name s, NONE, NoSyn)) perm_bn_names
val all_fun_eqs = map (pair Attrib.empty_binding) (flat perm_bn_eqs)
val prod_simps = @{thms prod.inject HOL.simp_thms}
val (_, lthy') = Function.add_function all_fun_names all_fun_eqs
Function_Common.default_config (pat_completeness_simp (prod_simps @ cns_thms)) lthy
val (info, lthy'') = prove_termination size_thms (Local_Theory.restore lthy')
val {fs, simps, ...} = info;
val morphism = ProofContext.export_morphism lthy'' lthy
val simps_exp = map (Morphism.thm morphism) (the simps)
in
(fs, simps_exp, lthy'')
end
(** equivarance proofs **)
val eqvt_apply_sym = @{thm eqvt_apply[symmetric]}
fun subproof_tac const_names simps =
SUBPROOF (fn {prems, context, ...} =>
HEADGOAL
(simp_tac (HOL_basic_ss addsimps simps)
THEN' Nominal_Permeq.eqvt_tac context [] const_names
THEN' simp_tac (HOL_basic_ss addsimps (prems @ [eqvt_apply_sym]))))
fun prove_eqvt_tac insts ind_thms const_names simps ctxt =
HEADGOAL
(Object_Logic.full_atomize_tac
THEN' (DETERM o (InductTacs.induct_rules_tac ctxt insts ind_thms))
THEN_ALL_NEW subproof_tac const_names simps ctxt)
fun mk_eqvt_goal pi const arg =
let
val lhs = mk_perm pi (const $ arg)
val rhs = const $ (mk_perm pi arg)
in
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
fun raw_prove_eqvt consts ind_thms simps ctxt =
if null consts then []
else
let
val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
val p = Free (p, @{typ perm})
val arg_tys =
consts
|> map fastype_of
|> map domain_type
val (arg_names, ctxt'') =
Variable.variant_fixes (Datatype_Prop.make_tnames arg_tys) ctxt'
val args = map Free (arg_names ~~ arg_tys)
val goals = map2 (mk_eqvt_goal p) consts args
val insts = map (single o SOME) arg_names
val const_names = map (fst o dest_Const) consts
in
Goal.prove_multi ctxt'' [] [] goals (fn {context, ...} =>
prove_eqvt_tac insts ind_thms const_names simps context)
|> ProofContext.export ctxt'' ctxt
end
(*** raw permutation functions ***)
(** proves the two pt-type class properties **)
fun prove_permute_zero induct perm_defs perm_fns lthy =
let
val perm_types = map (body_type o fastype_of) perm_fns
val perm_indnames = Datatype_Prop.make_tnames perm_types
fun single_goal ((perm_fn, T), x) =
HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))
val goals =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)
val tac = (Datatype_Aux.indtac induct perm_indnames
THEN_ALL_NEW asm_simp_tac simps) 1
in
Goal.prove lthy perm_indnames [] goals (K tac)
|> Datatype_Aux.split_conj_thm
end
fun prove_permute_plus induct perm_defs perm_fns lthy =
let
val p = Free ("p", @{typ perm})
val q = Free ("q", @{typ perm})
val perm_types = map (body_type o fastype_of) perm_fns
val perm_indnames = Datatype_Prop.make_tnames perm_types
fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq
(perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T)))
val goals =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)
val tac = (Datatype_Aux.indtac induct perm_indnames
THEN_ALL_NEW asm_simp_tac simps) 1
in
Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
|> Datatype_Aux.split_conj_thm
end
fun mk_perm_eq ty_perm_assoc cnstr =
let
fun lookup_perm p (ty, arg) =
case (AList.lookup (op=) ty_perm_assoc ty) of
SOME perm => perm $ p $ arg
| NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg
val p = Free ("p", @{typ perm})
val (arg_tys, ty) =
fastype_of cnstr
|> strip_type
val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
val args = map Free (arg_names ~~ arg_tys)
val lhs = lookup_perm p (ty, list_comb (cnstr, args))
val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args))
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
in
(Attrib.empty_binding, eq)
end
fun define_raw_perms full_ty_names tys tvs constrs induct_thm lthy =
let
val perm_fn_names = full_ty_names
|> map Long_Name.base_name
|> map (prefix "permute_")
val perm_fn_types = map perm_ty tys
val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names
val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs
fun tac _ (_, _, simps) =
Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
fun morphism phi (fvs, dfs, simps) =
(map (Morphism.term phi) fvs,
map (Morphism.thm phi) dfs,
map (Morphism.thm phi) simps);
val ((perm_funs, perm_eq_thms), lthy') =
lthy
|> Local_Theory.exit_global
|> Class.instantiation (full_ty_names, tvs, @{sort pt})
|> Primrec.add_primrec perm_fn_binds perm_eqs
val perm_zero_thms = prove_permute_zero induct_thm perm_eq_thms perm_funs lthy'
val perm_plus_thms = prove_permute_plus induct_thm perm_eq_thms perm_funs lthy'
in
lthy'
|> Class.prove_instantiation_exit_result morphism tac
(perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms)
||> Named_Target.theory_init
end
end (* structure *)