--- a/Nominal/nominal_dt_rawfuns.ML Tue Dec 07 14:27:21 2010 +0000
+++ b/Nominal/nominal_dt_rawfuns.ML Tue Dec 07 14:27:39 2010 +0000
@@ -2,7 +2,7 @@
Author: Cezary Kaliszyk
Author: Christian Urban
- Definitions of the raw fv and fv_bn functions
+ Definitions of the raw fv, fv_bn and permute functions.
*)
signature NOMINAL_DT_RAWFUNS =
@@ -41,6 +41,9 @@
local_theory -> (term list * thm list * local_theory)
val raw_prove_eqvt: term list -> thm list -> thm list -> Proof.context -> thm list
+
+ val define_raw_perms: string list -> typ list -> (string * sort) list -> term list -> thm ->
+ local_theory -> (term list * thm list * thm list) * local_theory
end
@@ -368,6 +371,7 @@
HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
end
+
fun raw_prove_eqvt consts ind_thms simps ctxt =
if null consts then []
else
@@ -390,5 +394,117 @@
|> ProofContext.export ctxt'' ctxt
end
+
+
+(*** raw permutation functions ***)
+
+(** proves the two pt-type class properties **)
+
+fun prove_permute_zero induct perm_defs perm_fns lthy =
+ let
+ val perm_types = map (body_type o fastype_of) perm_fns
+ val perm_indnames = Datatype_Prop.make_tnames perm_types
+
+ fun single_goal ((perm_fn, T), x) =
+ HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))
+
+ val goals =
+ HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
+ (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
+
+ val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)
+
+ val tac = (Datatype_Aux.indtac induct perm_indnames
+ THEN_ALL_NEW asm_simp_tac simps) 1
+ in
+ Goal.prove lthy perm_indnames [] goals (K tac)
+ |> Datatype_Aux.split_conj_thm
+ end
+
+
+fun prove_permute_plus induct perm_defs perm_fns lthy =
+ let
+ val p = Free ("p", @{typ perm})
+ val q = Free ("q", @{typ perm})
+ val perm_types = map (body_type o fastype_of) perm_fns
+ val perm_indnames = Datatype_Prop.make_tnames perm_types
+
+ fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq
+ (perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T)))
+
+ val goals =
+ HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
+ (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
+
+ val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)
+
+ val tac = (Datatype_Aux.indtac induct perm_indnames
+ THEN_ALL_NEW asm_simp_tac simps) 1
+ in
+ Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
+ |> Datatype_Aux.split_conj_thm
+ end
+
+
+fun mk_perm_eq ty_perm_assoc cnstr =
+ let
+ fun lookup_perm p (ty, arg) =
+ case (AList.lookup (op=) ty_perm_assoc ty) of
+ SOME perm => perm $ p $ arg
+ | NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg
+
+ val p = Free ("p", @{typ perm})
+ val (arg_tys, ty) =
+ fastype_of cnstr
+ |> strip_type
+
+ val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
+ val args = map Free (arg_names ~~ arg_tys)
+
+ val lhs = lookup_perm p (ty, list_comb (cnstr, args))
+ val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args))
+
+ val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
+ in
+ (Attrib.empty_binding, eq)
+ end
+
+
+fun define_raw_perms full_ty_names tys tvs constrs induct_thm lthy =
+ let
+ val perm_fn_names = full_ty_names
+ |> map Long_Name.base_name
+ |> map (prefix "permute_")
+
+ val perm_fn_types = map perm_ty tys
+ val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
+ val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names
+
+ val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs
+
+ fun tac _ (_, _, simps) =
+ Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
+
+ fun morphism phi (fvs, dfs, simps) =
+ (map (Morphism.term phi) fvs,
+ map (Morphism.thm phi) dfs,
+ map (Morphism.thm phi) simps);
+
+ val ((perm_funs, perm_eq_thms), lthy') =
+ lthy
+ |> Local_Theory.exit_global
+ |> Class.instantiation (full_ty_names, tvs, @{sort pt})
+ |> Primrec.add_primrec perm_fn_binds perm_eqs
+
+ val perm_zero_thms = prove_permute_zero induct_thm perm_eq_thms perm_funs lthy'
+ val perm_plus_thms = prove_permute_plus induct_thm perm_eq_thms perm_funs lthy'
+ in
+ lthy'
+ |> Class.prove_instantiation_exit_result morphism tac
+ (perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms)
+ ||> Named_Target.theory_init
+ end
+
+
end (* structure *)