diff -r 0f289a52edbe -r b136721eedb2 Nominal/nominal_dt_rawfuns.ML --- a/Nominal/nominal_dt_rawfuns.ML Tue Dec 07 14:27:21 2010 +0000 +++ b/Nominal/nominal_dt_rawfuns.ML Tue Dec 07 14:27:39 2010 +0000 @@ -2,7 +2,7 @@ Author: Cezary Kaliszyk Author: Christian Urban - Definitions of the raw fv and fv_bn functions + Definitions of the raw fv, fv_bn and permute functions. *) signature NOMINAL_DT_RAWFUNS = @@ -41,6 +41,9 @@ local_theory -> (term list * thm list * local_theory) val raw_prove_eqvt: term list -> thm list -> thm list -> Proof.context -> thm list + + val define_raw_perms: string list -> typ list -> (string * sort) list -> term list -> thm -> + local_theory -> (term list * thm list * thm list) * local_theory end @@ -368,6 +371,7 @@ HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) end + fun raw_prove_eqvt consts ind_thms simps ctxt = if null consts then [] else @@ -390,5 +394,117 @@ |> ProofContext.export ctxt'' ctxt end + + +(*** raw permutation functions ***) + +(** proves the two pt-type class properties **) + +fun prove_permute_zero induct perm_defs perm_fns lthy = + let + val perm_types = map (body_type o fastype_of) perm_fns + val perm_indnames = Datatype_Prop.make_tnames perm_types + + fun single_goal ((perm_fn, T), x) = + HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T)) + + val goals = + HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj + (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames))) + + val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs) + + val tac = (Datatype_Aux.indtac induct perm_indnames + THEN_ALL_NEW asm_simp_tac simps) 1 + in + Goal.prove lthy perm_indnames [] goals (K tac) + |> Datatype_Aux.split_conj_thm + end + + +fun prove_permute_plus induct perm_defs perm_fns lthy = + let + val p = Free ("p", @{typ perm}) + val q = Free ("q", @{typ perm}) + val perm_types = map (body_type o fastype_of) perm_fns + val perm_indnames = Datatype_Prop.make_tnames perm_types + + fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq + (perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T))) + + val goals = + HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj + (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames))) + + val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs) + + val tac = (Datatype_Aux.indtac induct perm_indnames + THEN_ALL_NEW asm_simp_tac simps) 1 + in + Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac) + |> Datatype_Aux.split_conj_thm + end + + +fun mk_perm_eq ty_perm_assoc cnstr = + let + fun lookup_perm p (ty, arg) = + case (AList.lookup (op=) ty_perm_assoc ty) of + SOME perm => perm $ p $ arg + | NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg + + val p = Free ("p", @{typ perm}) + val (arg_tys, ty) = + fastype_of cnstr + |> strip_type + + val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys) + val args = map Free (arg_names ~~ arg_tys) + + val lhs = lookup_perm p (ty, list_comb (cnstr, args)) + val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args)) + + val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs)) + in + (Attrib.empty_binding, eq) + end + + +fun define_raw_perms full_ty_names tys tvs constrs induct_thm lthy = + let + val perm_fn_names = full_ty_names + |> map Long_Name.base_name + |> map (prefix "permute_") + + val perm_fn_types = map perm_ty tys + val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types) + val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names + + val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs + + fun tac _ (_, _, simps) = + Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps) + + fun morphism phi (fvs, dfs, simps) = + (map (Morphism.term phi) fvs, + map (Morphism.thm phi) dfs, + map (Morphism.thm phi) simps); + + val ((perm_funs, perm_eq_thms), lthy') = + lthy + |> Local_Theory.exit_global + |> Class.instantiation (full_ty_names, tvs, @{sort pt}) + |> Primrec.add_primrec perm_fn_binds perm_eqs + + val perm_zero_thms = prove_permute_zero induct_thm perm_eq_thms perm_funs lthy' + val perm_plus_thms = prove_permute_plus induct_thm perm_eq_thms perm_funs lthy' + in + lthy' + |> Class.prove_instantiation_exit_result morphism tac + (perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms) + ||> Named_Target.theory_init + end + + end (* structure *)