Slides/Slides1.thy
author Christian Urban <urbanc@in.tum.de>
Tue, 01 Jun 2010 15:46:07 +0200
changeset 2307 118a0ca16381
parent 2304 8a98171ba1fc
child 2309 13f20fe02ff3
permissions -rw-r--r--
merged

(*<*)
theory Slides1
imports "LaTeXsugar" "Nominal"
begin

notation (latex output)
  set ("_") and
  Cons  ("_::/_" [66,65] 65) 

(*>*)


text_raw {*
  \renewcommand{\slidecaption}{TU Munich, 28.~May 2010}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>[t]
  \frametitle{%
  \begin{tabular}{@ {\hspace{-3mm}}c@ {}}
  \\
  \huge Nominal 2\\[-2mm] 
  \large Or, How to Reason Conveniently with\\[-5mm]
  \large General Bindings in Isabelle\\[15mm]
  \end{tabular}}
  \begin{center}
  joint work with {\bf Cezary} and Brian Huf\!fman\\[0mm] 
  \end{center}
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     

*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2>
  \frametitle{\begin{tabular}{c}Part I: Nominal Theory\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item sorted atoms and sort-respecting permutations\medskip

  \onslide<2->{
  \item[] in old Nominal: atoms have \underline{dif\!ferent} type\medskip

  \begin{center}
  \begin{tabular}{c@ {\hspace{7mm}}c}
  $[]\;\act\;c \dn c$ &
  $(a\;b)\!::\!\pi\;\act\;c \dn$ 
  $\begin{cases}
  b & \text{if}\; \pi \act c = a\\
  a & \text{if}\; \pi \act c = b\\
  \pi \act c & \text{otherwise}
  \end{cases}$
  \end{tabular}
  \end{center}}
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>
  \frametitle{\begin{tabular}{c}Problems\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item @{text "_ \<bullet> _ :: \<alpha> perm \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}\bigskip

  \item @{text "supp _ :: \<beta> \<Rightarrow> \<alpha> set"}

  \begin{center}
  $\text{finite} (\text{supp}\;x)_{\,\alpha_1\,\text{set}}$ \ldots 
  $\text{finite} (\text{supp}\;x)_{\,\alpha_n\,\text{set}}$
  \end{center}\bigskip
  
  \item $\forall \pi_{\alpha_1} \ldots \pi_{\alpha_n}\;.\; P$\bigskip

  \item type-classes
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-4>
  \frametitle{\begin{tabular}{c}Our New Solution\end{tabular}}
  \mbox{}\\[-3mm]
*}
datatype atom = Atom string nat

text_raw {*
  \mbox{}\bigskip
  \begin{itemize}
  \item<2-> permutations are (restricted) bijective functions from @{text "atom \<Rightarrow> atom"}

     \begin{itemize}
     \item sort-respecting \hspace{5mm}($\forall a.\;\text{sort}(f a) = \text{sort}(a)$)
     \item finite domain \hspace{5mm}($\text{finite} \{a.\;f a \not= a\}$)
     \end{itemize}\medskip

  \item<3-> swappings:
     \small
     \[
     \begin{array}{l@ {\hspace{1mm}}l}
     (a\;b) \dn & \text{if}\;\text{sort}(a) = \text{sort}(b)\\
        & \text{then}\;\lambda  c. \text{if}\;a = c\;\text{then}\;b\;\text{else}\;
          \text{if}\;b = c\;\text{then}\;a\;\text{else}\;c\\
        & \text{else}\;\only<3>{\mbox{\textcolor{red}{\bf ?}}}\only<4->{\text{id}}
     \end{array}
     \]
  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-6>
  \frametitle{\begin{tabular}{c}\LARGE{}A Smoother Nominal Theory\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item<1-> $(a\;b) = (b\;a) \onslide<3->{= (a\;c) + (b\;c) + (a\;c)}$\bigskip  

  \item<2-> permutations are an instance of group\_add\\ $0$, $\pi_1 + \pi_2$, $- \pi$\bigskip

  \item<5-> $\_\;\act\;\_ :: \text{perm} \Rightarrow \alpha \Rightarrow \alpha$\medskip
  
   \begin{itemize}
   \item $0\;\act\;x = x$\\
   \item $(\pi_1 + \pi_2)\;\act\;x = \pi_1\;\act\;(\pi_2\;\act\;x)$
   \end{itemize}

   \small
   \onslide<6->{$\text{finite}(\text{supp}\;x)$, $\forall \pi. P$}
  \end{itemize}

  \only<4>{
  \begin{textblock}{6}(2.5,11)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\normalsize\color{darkgray}
  \begin{minipage}{8cm}\raggedright
  This is slightly odd, since in general: 
  \begin{center}$\pi_1 + \pi_2 \alert{\not=} \pi_2 + \pi_1$\end{center}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-3>
  \frametitle{\begin{tabular}{c}Very Few Snatches\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item \underline{concrete} atoms:
  \end{itemize}
*}
(*<*)
consts sort :: "atom \<Rightarrow> string"
(*>*)

typedef name = "{a :: atom. sort a = ''name''}" (*<*)sorry(*>*)
typedef ident = "{a :: atom. sort a = ''ident''}" (*<*)sorry(*>*)

text_raw {*
  \mbox{}\bigskip\bigskip
  \begin{itemize}
  \item<2-> there is an overloaded  function \underline{atom}, which injects concrete 
  atoms into generic ones\medskip 
  \begin{center}
  \begin{tabular}{l}
  $\text{atom}(a) \fresh x$\\
  $(a \leftrightarrow b) \dn (\text{atom}(a)\;\;\text{atom}(b))$
  \end{tabular}
  \end{center}\bigskip\medskip

  \onslide<3->
  {I would like to have $a \fresh x$, $(a\; b)$, \ldots}

  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2>[c]
  \frametitle{\begin{tabular}{c}\LARGE{}End of Part I\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item the formalised version of the nominal theory is now much nicer to 
  work with (sorts are occasionally explicit)\bigskip

  \item permutations: ``be as abstract as you can'' (group\_add is a slight oddity)\bigskip

  \item allow sort-disrespecting swappings\onslide<2->{: just define them as the identity}
  \end{itemize}

  
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2>
  \frametitle{\begin{tabular}{c}\LARGE{}Part II: General Bindings\end{tabular}}
  \mbox{}\\[-6mm]

  \begin{itemize}
  \item old Nominal provided a reasoning infrastructure for single binders\medskip
  
  \begin{center}
  Lam [a].(Var a)
  \end{center}\bigskip

  \item<2-> but representing 

  \begin{center}
  $\forall\{a_1,\ldots,a_n\}.\; T$ 
  \end{center}\medskip

  with single binders is a \alert{major} pain; take my word for it!
  \end{itemize}

  \only<1>{
  \begin{textblock}{6}(1.5,11)
  \small
  for example\\
  \begin{tabular}{l@ {\hspace{2mm}}l}
  \pgfuseshading{smallspherered} & a $\fresh$ Lam [a]. t\\
  \pgfuseshading{smallspherered} & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\
  \end{tabular}
  \end{textblock}}
  
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-4>
  \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item binding sets of names has some interesting properties:\medskip
  
  \begin{center}
  \begin{tabular}{l}
  $\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$
  \bigskip\smallskip\\

  \onslide<2->{%
  $\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$
  }\bigskip\smallskip\\

  \onslide<3->{%
  $\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$
  }\medskip\\
  \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type}
  \end{tabular}
  \end{center}
  \end{itemize}
  
  \begin{textblock}{8}(2,14.5)
  \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct
  \end{textblock}

  \only<4>{
  \begin{textblock}{6}(2.5,4)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\normalsize\color{darkgray}
  \begin{minipage}{8cm}\raggedright
  For type-schemes the order of bound names does not matter, and
  alpha-equivalence is preserved under \alert{vacuous} binders.
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-3>
  \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item alpha-equivalence being preserved under vacuous binders is \underline{not} always
  wanted:\bigskip\bigskip\normalsize
  
  \begin{tabular}{@ {\hspace{-8mm}}l}
  $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\
  \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}}
   \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and}
    \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$}
  \end{tabular}
  

  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>
  \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip
  
  \begin{center}
  \begin{tabular}{@ {\hspace{-8mm}}l}
  $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\
  $\;\;\;\not\approx_\alpha
   \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$
  \end{tabular}
  \end{center}
  

  \end{itemize}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2>
  \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item the order does not matter and alpha-equivelence is preserved under
  vacuous binders (restriction)\medskip
  
  \item the order does not matter, but the cardinality of the binders 
  must be the same (abstraction)\medskip

  \item the order does matter
  \end{itemize}

  \onslide<2->{
  \begin{center}
  \isacommand{bind\_res}\hspace{6mm}
  \isacommand{bind\_set}\hspace{6mm}
  \isacommand{bind}
  \end{center}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-3>
  \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}}
  \mbox{}\\[-6mm]

  \mbox{}\hspace{10mm}
  \begin{tabular}{ll}
  \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
  \hspace{5mm}\phantom{$|$} Var name\\
  \hspace{5mm}$|$ App trm trm\\
  \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm
  & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\
  \hspace{5mm}$|$ Let \only<2->{as::}assn \only<2->{t::}trm
  & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\
  \multicolumn{2}{l}{\isacommand{and} assn $=$}\\
  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\
  \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\
  \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $\varnothing$}}\\
  \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ $\{$a$\}$ $\cup$ bn(as)}}\\
  \end{tabular}



  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-4>
  \frametitle{\begin{tabular}{c}Ott\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item this way of specifying binding is pretty much stolen from 
  Ott\onslide<2->{, \alert{\bf but} with adjustments:}\medskip

  \begin{itemize}
  \item<2-> Ott allows specifications like\smallskip
  \begin{center}
  $t ::= t\;t\; |\;\lambda x.t$
  \end{center}\medskip

  \item<3-> whether something is bound can depend on other bound things\smallskip
  \begin{center}
  Foo $(\lambda x. t)\; s$ 
  \end{center}\medskip
  \onslide<4->{this might make sense for ``raw'' terms, but not at all 
  for $\alpha$-equated terms}
  \end{itemize}
  \end{itemize}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}
text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>
  \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item in old Nominal we represented single binders as partial functions:\bigskip
  
  \begin{center}
  \begin{tabular}{l}
  Lam [$a$].$t$ $\;\dn$\\[2mm]
  \;\;\;\;$\lambda b.$\;$\text{if}\;a = b\;\text{then}\;t\;\text{else}$\\
  \phantom{\;\;\;\;$\lambda b.$\;\;\;}$\text{if}\;b \fresh t\;
  \text{then}\;(a\;b)\act t\;\text{else}\;\text{error}$ 
  \end{tabular}
  \end{center}
  \end{itemize}

  \begin{textblock}{10}(2,14)
  \footnotesize $^*$ alpha-equality coincides with equality on functions
  \end{textblock}
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-9>
  \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item lets first look at pairs\bigskip\medskip

  \begin{tabular}{@ {\hspace{1cm}}l}
  $(as, x) \onslide<2->{\approx\!}\makebox[0mm][l]{\only<2-7>{${}_{\text{set}}$}%
           \only<8>{${}_{\text{\alert{list}}}$}%
           \only<9>{${}_{\text{\alert{res}}}$}}%
           \onslide<3->{^{R,\text{fv}}}\,\onslide<2->{(bs,y)}$
  \end{tabular}\bigskip
  \end{itemize}

  \only<1>{
  \begin{textblock}{8}(3,8.5)
  \begin{tabular}{l@ {\hspace{2mm}}p{8cm}}
  \pgfuseshading{smallspherered} & $as$ is a set of atoms\ldots the binders\\
  \pgfuseshading{smallspherered} & $x$ is the body\\
  \pgfuseshading{smallspherered} & $\approx_{\text{set}}$ is where the cardinality 
  of the binders has to be the same\\
  \end{tabular}
  \end{textblock}}

  \only<4->{
  \begin{textblock}{12}(5,8)
  \begin{tabular}{ll@ {\hspace{1mm}}l}
  $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm]
        & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm]
        & \onslide<6->{$\;\;\;\wedge$} & \onslide<6->{$(\pi \act x)\;R\;y$}\\[1mm]
        & \onslide<7-8>{$\;\;\;\wedge$} & \onslide<7-8>{$\pi \act as = bs$}\\
  \end{tabular}
  \end{textblock}}
  
  \only<8>{
  \begin{textblock}{8}(3,13.8)
  \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of atoms 
  \end{textblock}}
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2>
  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{itemize}
  \item lets look at ``type-schemes'':\medskip\medskip

  \begin{center}
  $(as, x) \approx\!\makebox[0mm][l]{${}_{\text{set}}$}\only<1>{{}^{R,\text{fv}}}\only<2->{{}^{\alert{=},\alert{\text{fv}}}} (bs, y)$
  \end{center}\medskip

  \onslide<2->{
  \begin{center}
  \begin{tabular}{l}
  $\text{fv}(x) = \{x\}$\\[1mm]
  $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\
  \end{tabular}
  \end{center}}
  \end{itemize}

  
  \only<2->{
  \begin{textblock}{4}(0.3,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{res:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  \\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}
  \only<2->{
  \begin{textblock}{4}(5.2,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{set:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  $\wedge$ & $\pi \cdot as = bs$\\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}
  \only<2->{
  \begin{textblock}{4}(10.2,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{list:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  $\wedge$ & $\pi \cdot as = bs$\\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2>
  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{center}
  \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$}
  \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$}
  \end{center}

  \begin{itemize}
  \item $\approx_{\text{res}}$, $\approx_{\text{set}}$% 
  \only<2>{, \alert{$\not\approx_{\text{list}}$}}
  \end{itemize}

  
  \only<1->{
  \begin{textblock}{4}(0.3,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{res:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  \\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}
  \only<1->{
  \begin{textblock}{4}(5.2,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{set:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  $\wedge$ & $\pi \cdot as = bs$\\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}
  \only<1->{
  \begin{textblock}{4}(10.2,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{list:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  $\wedge$ & $\pi \cdot as = bs$\\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>
  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{center}
  \only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$}
  \end{center}

  \begin{itemize}
  \item $\approx_{\text{res}}$, $\not\approx_{\text{set}}$,
        $\not\approx_{\text{list}}$
  \end{itemize}

  
  \only<1->{
  \begin{textblock}{4}(0.3,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{res:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  \\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}
  \only<1->{
  \begin{textblock}{4}(5.2,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{set:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  $\wedge$ & $\pi \cdot as = bs$\\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}
  \only<1->{
  \begin{textblock}{4}(10.2,12)
  \begin{tikzpicture}
  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
  {\tiny\color{darkgray}
  \begin{minipage}{3.4cm}\raggedright
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {}l}{list:}\\
  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
  $\wedge$ & $\pi \cdot x = y$\\
  $\wedge$ & $\pi \cdot as = bs$\\
  \end{tabular}
  \end{minipage}};
  \end{tikzpicture}
  \end{textblock}}

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-3>
  \frametitle{\begin{tabular}{c}General Abstractions\end{tabular}}
  \mbox{}\\[-7mm]

  \begin{itemize}
  \item we take $(as, x) \approx\!\makebox[0mm][l]{${}_{\star}$}^{=,\text{supp}} (bs, y)$\medskip
  \item they are equivalence relations\medskip
  \item we can therefore use the quotient package to introduce the 
  types $\beta\;\text{abs}_\star$\bigskip
  \begin{center}
  \only<1>{$[as].\,x$}
  \only<2>{$\text{supp}([as].x) = \text{supp}(x) - as$}
  \only<3>{%
  \begin{tabular}{r@ {\hspace{1mm}}l}
  \multicolumn{2}{@ {\hspace{-7mm}}l}{$[as]. x \alert{=}  [bs].y\;\;\;\text{if\!f}$}\\[2mm]
  $\exists \pi.$ & $\text{supp}(x) - as = \text{supp}(y) - bs$\\
  $\wedge$       & $\text{supp}(x) - as \fresh^* \pi$\\
  $\wedge$       & $\pi \act x = y $\\
  $(\wedge$       & $\pi \act as = bs)\;^\star$\\
  \end{tabular}}
  \end{center}
  \end{itemize}

  
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>
  \frametitle{\begin{tabular}{c}One Problem\end{tabular}}
  \mbox{}\\[-3mm]

  \begin{center}
  $\text{let}\;x_1=t_1 \ldots x_n=t_n\;\text{in}\;s$
  \end{center}

  \begin{itemize}
  \item we cannot represent this as\medskip
  \begin{center}
  $\text{let}\;[x_1,\ldots,x_n]\alert{.}s\;\;[t_1,\ldots,t_n]$
  \end{center}\bigskip

  because\medskip
  \begin{center}
  $\text{let}\;[x].s\;\;[t_1,t_2]$
  \end{center}
  \end{itemize}

  
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1->
  \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}}
  \mbox{}\\[-6mm]

  \mbox{}\hspace{10mm}
  \begin{tabular}{ll}
  \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
  \hspace{5mm}\phantom{$|$} Var name\\
  \hspace{5mm}$|$ App trm trm\\
  \hspace{5mm}$|$ Lam x::name t::trm
  & \isacommand{bind} x \isacommand{in} t\\
  \hspace{5mm}$|$ Let as::assn t::trm
  & \isacommand{bind} bn(as) \isacommand{in} t\\
  \multicolumn{2}{l}{\isacommand{and} assn $=$}\\
  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\
  \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\
  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\
  \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\
  \end{tabular}



  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2>
  \frametitle{\begin{tabular}{c}``Raw'' Definitions\end{tabular}}
  \mbox{}\\[-6mm]

  \mbox{}\hspace{10mm}
  \begin{tabular}{ll}
  \multicolumn{2}{l}{\isacommand{datatype} trm $=$}\\
  \hspace{5mm}\phantom{$|$} Var name\\
  \hspace{5mm}$|$ App trm trm\\
  \hspace{5mm}$|$ Lam name trm\\
  \hspace{5mm}$|$ Let assn trm\\
  \multicolumn{2}{l}{\isacommand{and} assn $=$}\\
  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\[5mm]
  \multicolumn{2}{l}{\isacommand{function} bn \isacommand{where}}\\
  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\
  \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\
  \end{tabular}

  \only<2>{
  \begin{textblock}{5}(10,5)
  $+$ \begin{tabular}{l}automatically\\ 
  generate fv's\end{tabular}
  \end{textblock}}
  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>
  \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}}
  \mbox{}\\[6mm]

  \begin{center}
  Lam x::name t::trm \hspace{10mm}\isacommand{bind} x \isacommand{in} t\\
  \end{center}


  \[
  \infer[\text{Lam-}\!\approx_\alpha]
  {\text{Lam}\;x\;t \approx_\alpha \text{Lam}\;x'\;t'}
  {([x], t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
    ^{\approx_\alpha,\text{fv}} ([x'], t')}
  \]


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1>
  \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}}
  \mbox{}\\[6mm]

  \begin{center}
  Lam x::name y::name t::trm s::trm \hspace{5mm}\isacommand{bind} x y \isacommand{in} t s\\
  \end{center}


  \[
  \infer[\text{Lam-}\!\approx_\alpha]
  {\text{Lam}\;x\;y\;t\;s \approx_\alpha \text{Lam}\;x'\;y'\;t'\;s'}
  {([x, y], (t, s)) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
    ^{R, fv} ([x', y'], (t', s'))}
  \]

  \footnotesize
  where $R =\;\approx_\alpha\times\approx_\alpha$ and $fv = \text{fv}\times\text{fv}$

  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1-2>
  \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}}
  \mbox{}\\[6mm]

  \begin{center}
  Let as::assn t::trm \hspace{10mm}\isacommand{bind} bn(as) \isacommand{in} t\\
  \end{center}


  \[
  \infer[\text{Let-}\!\approx_\alpha]
  {\text{Let}\;as\;t \approx_\alpha \text{Let}\;as'\;t'}
  {(\text{bn}(as), t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
    ^{\approx_\alpha,\text{fv}} (\text{bn}(as'), t') &
   \onslide<2>{as \approx_\alpha^{\text{bn}} as'}}
  \]


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1->
  \frametitle{\begin{tabular}{c}\LARGE{}$\alpha$ for Binding Functions\end{tabular}}
  \mbox{}\\[-6mm]

  \mbox{}\hspace{10mm}
  \begin{tabular}{l}
  \ldots\\
  \isacommand{binder} bn \isacommand{where}\\
  \phantom{$|$} bn(ANil) $=$ $[]$\\
  $|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)\\
  \end{tabular}\bigskip

  \begin{center}
  \mbox{\infer{\text{ANil} \approx_\alpha^{\text{bn}} \text{ANil}}{}}\bigskip

  \mbox{\infer{\text{ACons}\;a\;t\;as \approx_\alpha^{\text{bn}} \text{ACons}\;a'\;t'\;as'}
  {t \approx_\alpha t' & as \approx_\alpha^{bn} as'}}
  \end{center}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1->
  \frametitle{\begin{tabular}{c}Automatic Proofs\end{tabular}}
  \mbox{}\\[-6mm]

  \begin{itemize}
  \item we can show that $\alpha$'s are equivalence relations\medskip
  \item as a result we can use the quotient package to introduce the type(s)
  of $\alpha$-equated terms

  \[
  \infer
  {\text{Lam}\;x\;t \alert{=} \text{Lam}\;x'\;t'}
  {\only<1>{([x], t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
    ^{=,\text{supp}} ([x'], t')}%
   \only<2>{[x].t = [x'].t'}}
  \]


  \item the properties for support are implied by the properties of $[\_].\_$
  \item we can derive strong induction principles (almost automatic---just a matter of
  another week or two)
  \end{itemize}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

text_raw {*
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
  \mode<presentation>{
  \begin{frame}<1->
  \frametitle{\begin{tabular}{c}Conclusion\end{tabular}}
  \mbox{}\\[-6mm]

  \begin{itemize}
  \item the user does not see anything of the raw level\medskip
  \only<1>{\begin{center}
  Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)
  \end{center}\bigskip}

  \item<2-> we have not yet done function definitions (will come soon and
  we hope to make improvements over the old way there too)\medskip
  \item<3-> it took quite some time to get here, but it seems worthwhile (POPL 2011 tutorial)\medskip
  \item<4-> Thanks goes to Cezary!\\ 
  \only<5->{\hspace{3mm}\ldots{}and of course others $\in$ Isabelle-team!} 
  \end{itemize}


  \end{frame}}
  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
*}

(*<*)
end
(*>*)