--- a/Nominal/Nominal2_Base.thy Wed Feb 16 14:44:33 2011 +0000
+++ b/Nominal/Nominal2_Base.thy Thu Feb 24 16:26:11 2011 +0000
@@ -1654,7 +1654,6 @@
done
lemma fresh_star_atom_set_conv:
- fixes p::"perm"
assumes fresh: "as \<sharp>* bs"
and fin: "finite as" "finite bs"
shows "bs \<sharp>* as"
@@ -1662,6 +1661,13 @@
unfolding fresh_star_def fresh_def
by (auto simp add: supp_finite_atom_set fin)
+lemma atom_fresh_star_disjoint:
+ assumes fin: "finite bs"
+ shows "as \<sharp>* bs \<longleftrightarrow> (as \<inter> bs = {})"
+
+unfolding fresh_star_def fresh_def
+by (auto simp add: supp_finite_atom_set fin)
+
lemma fresh_star_Pair:
shows "as \<sharp>* (x, y) = (as \<sharp>* x \<and> as \<sharp>* y)"
@@ -1747,14 +1753,6 @@
apply(simp add: imp_eqvt fresh_eqvt mem_eqvt)
done
-lemma at_fresh_star_inter:
- assumes a: "(p \<bullet> bs) \<sharp>* bs"
- and b: "finite bs"
- shows "p \<bullet> bs \<inter> bs = {}"
-using a b
-unfolding fresh_star_def
-unfolding fresh_def
-by (auto simp add: supp_finite_atom_set)
section {* Induction principle for permutations *}