diff -r fafc461bdb9e -r eebc24b9cf39 Nominal/Nominal2_Base.thy --- a/Nominal/Nominal2_Base.thy Wed Feb 16 14:44:33 2011 +0000 +++ b/Nominal/Nominal2_Base.thy Thu Feb 24 16:26:11 2011 +0000 @@ -1654,7 +1654,6 @@ done lemma fresh_star_atom_set_conv: - fixes p::"perm" assumes fresh: "as \* bs" and fin: "finite as" "finite bs" shows "bs \* as" @@ -1662,6 +1661,13 @@ unfolding fresh_star_def fresh_def by (auto simp add: supp_finite_atom_set fin) +lemma atom_fresh_star_disjoint: + assumes fin: "finite bs" + shows "as \* bs \ (as \ bs = {})" + +unfolding fresh_star_def fresh_def +by (auto simp add: supp_finite_atom_set fin) + lemma fresh_star_Pair: shows "as \* (x, y) = (as \* x \ as \* y)" @@ -1747,14 +1753,6 @@ apply(simp add: imp_eqvt fresh_eqvt mem_eqvt) done -lemma at_fresh_star_inter: - assumes a: "(p \ bs) \* bs" - and b: "finite bs" - shows "p \ bs \ bs = {}" -using a b -unfolding fresh_star_def -unfolding fresh_def -by (auto simp add: supp_finite_atom_set) section {* Induction principle for permutations *}