QuotScript.thy
changeset 0 ebe0ea8fe247
child 93 ec29be471518
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/QuotScript.thy	Tue Aug 11 12:29:15 2009 +0200
@@ -0,0 +1,401 @@
+theory QuotScript
+imports Main
+begin
+
+definition 
+  "EQUIV E \<equiv> \<forall>x y. E x y = (E x = E y)" 
+
+definition
+  "REFL E \<equiv> \<forall>x. E x x"
+
+definition 
+  "SYM E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
+
+definition
+  "TRANS E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z"
+
+lemma EQUIV_REFL_SYM_TRANS:
+  shows "EQUIV E = (REFL E \<and> SYM E \<and> TRANS E)"
+unfolding EQUIV_def REFL_def SYM_def TRANS_def expand_fun_eq
+by (blast)
+
+definition
+  "PART_EQUIV E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))"
+
+lemma EQUIV_IMP_PART_EQUIV:
+  assumes a: "EQUIV E"
+  shows "PART_EQUIV E"
+using a unfolding EQUIV_def PART_EQUIV_def
+by auto
+
+definition
+  "QUOTIENT E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and> 
+                        (\<forall>a. E (Rep a) (Rep a)) \<and> 
+                        (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
+
+lemma QUOTIENT_ABS_REP:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows "Abs (Rep a) = a" 
+using a unfolding QUOTIENT_def
+by simp
+
+lemma QUOTIENT_REP_REFL:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows "E (Rep a) (Rep a)" 
+using a unfolding QUOTIENT_def
+by blast
+
+lemma QUOTIENT_REL:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
+using a unfolding QUOTIENT_def
+by blast
+
+lemma QUOTIENT_REL_ABS:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows "E r s \<Longrightarrow> Abs r = Abs s"
+using a unfolding QUOTIENT_def
+by blast
+
+lemma QUOTIENT_REL_ABS_EQ:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows "E r r \<Longrightarrow> E s s \<Longrightarrow> E r s = (Abs r = Abs s)"
+using a unfolding QUOTIENT_def
+by blast
+
+lemma QUOTIENT_REL_REP:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows "E (Rep a) (Rep b) = (a = b)"
+using a unfolding QUOTIENT_def
+by metis
+
+lemma QUOTIENT_REP_ABS:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows "E r r \<Longrightarrow> E (Rep (Abs r)) r"
+using a unfolding QUOTIENT_def
+by blast
+
+lemma IDENTITY_EQUIV:
+  shows "EQUIV (op =)"
+unfolding EQUIV_def
+by auto
+
+lemma IDENTITY_QUOTIENT:
+  shows "QUOTIENT (op =) (\<lambda>x. x) (\<lambda>x. x)"
+unfolding QUOTIENT_def
+by blast
+
+lemma QUOTIENT_SYM:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows "SYM E"
+using a unfolding QUOTIENT_def SYM_def
+by metis
+
+lemma QUOTIENT_TRANS:
+  assumes a: "QUOTIENT E Abs Rep"
+  shows "TRANS E"
+using a unfolding QUOTIENT_def TRANS_def
+by metis
+
+fun
+  fun_map 
+where
+  "fun_map f g h x = g (h (f x))"
+
+abbreviation
+  fun_map_syn ("_ ---> _")
+where
+  "f ---> g \<equiv> fun_map f g"  
+
+lemma FUN_MAP_I:
+  shows "(\<lambda>x. x ---> \<lambda>x. x) = (\<lambda>x. x)"
+by (simp add: expand_fun_eq)
+
+lemma IN_FUN:
+  shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
+by (simp add: mem_def)
+
+fun
+  FUN_REL 
+where
+  "FUN_REL E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
+
+abbreviation
+  FUN_REL_syn ("_ ===> _")
+where
+  "E1 ===> E2 \<equiv> FUN_REL E1 E2"  
+
+lemma FUN_REL_EQ:
+  "(op =) ===> (op =) = (op =)"
+by (simp add: expand_fun_eq)
+
+lemma FUN_QUOTIENT:
+  assumes q1: "QUOTIENT R1 abs1 rep1"
+  and     q2: "QUOTIENT R2 abs2 rep2"
+  shows "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+proof -
+  have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
+    apply(simp add: expand_fun_eq)
+    using q1 q2
+    apply(simp add: QUOTIENT_def)
+    done
+  moreover
+  have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
+    apply(auto)
+    using q1 q2 unfolding QUOTIENT_def
+    apply(metis)
+    done
+  moreover
+  have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> 
+        (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
+    apply(auto simp add: expand_fun_eq)
+    using q1 q2 unfolding QUOTIENT_def
+    apply(metis)
+    using q1 q2 unfolding QUOTIENT_def
+    apply(metis)
+    using q1 q2 unfolding QUOTIENT_def
+    apply(metis)
+    using q1 q2 unfolding QUOTIENT_def
+    apply(metis)
+    done
+  ultimately
+  show "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+    unfolding QUOTIENT_def by blast
+qed
+
+definition
+  Respects
+where
+  "Respects R x \<equiv> (R x x)"
+
+lemma IN_RESPECTS:
+  shows "(x \<in> Respects R) = R x x"
+unfolding mem_def Respects_def by simp
+
+lemma RESPECTS_THM:
+  shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))"
+unfolding Respects_def
+by (simp add: expand_fun_eq) 
+
+lemma RESPECTS_MP:
+  assumes a: "Respects (R1 ===> R2) f"
+  and     b: "R1 x y"
+  shows "R2 (f x) (f y)"
+using a b unfolding Respects_def
+by simp
+
+lemma RESPECTS_REP_ABS:
+  assumes a: "QUOTIENT R1 Abs1 Rep1"
+  and     b: "Respects (R1 ===> R2) f"
+  and     c: "R1 x x"
+  shows "R2 (f (Rep1 (Abs1 x))) (f x)"
+using a b[simplified RESPECTS_THM] c unfolding QUOTIENT_def
+by blast
+
+lemma RESPECTS_o:
+  assumes a: "Respects (R2 ===> R3) f"
+  and     b: "Respects (R1 ===> R2) g"
+  shows "Respects (R1 ===> R3) (f o g)"
+using a b unfolding Respects_def
+by simp
+
+(*
+definition
+  "RES_EXISTS_EQUIV R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and> 
+                          (\<forall>x\<in> Respects R. \<forall>y\<in> Respects R. P x \<and> P y \<longrightarrow> R x y)"
+*)
+
+lemma FUN_REL_EQ_REL:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g) 
+                             \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))"
+using FUN_QUOTIENT[OF q1 q2] unfolding Respects_def QUOTIENT_def expand_fun_eq
+by blast
+
+(* q1 and q2 not used; see next lemma *)
+lemma FUN_REL_MP:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
+by simp
+
+lemma FUN_REL_IMP:
+  shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
+by simp
+
+lemma FUN_REL_EQUALS:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  and     r1: "Respects (R1 ===> R2) f"
+  and     r2: "Respects (R1 ===> R2) g" 
+  shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
+apply(rule_tac iffI)
+using FUN_QUOTIENT[OF q1 q2] r1 r2 unfolding QUOTIENT_def Respects_def
+apply(metis FUN_REL_IMP)
+using r1 unfolding Respects_def expand_fun_eq
+apply(simp (no_asm_use))
+apply(metis QUOTIENT_REL[OF q2] QUOTIENT_REL_REP[OF q1])
+done
+
+(* ask Peter: FUN_REL_IMP used twice *) 
+lemma FUN_REL_IMP2:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  and     r1: "Respects (R1 ===> R2) f"
+  and     r2: "Respects (R1 ===> R2) g" 
+  and     a:  "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g"
+  shows "R1 x y \<Longrightarrow> R2 (f x) (g y)"
+using q1 q2 r1 r2 a
+by (simp add: FUN_REL_EQUALS)
+
+lemma EQUALS_PRS:
+  assumes q: "QUOTIENT R Abs Rep"
+  shows "(x = y) = R (Rep x) (Rep y)"
+by (simp add: QUOTIENT_REL_REP[OF q]) 
+
+lemma EQUALS_RSP:
+  assumes q: "QUOTIENT R Abs Rep"
+  and     a: "R x1 x2" "R y1 y2"
+  shows "R x1 y1 = R x2 y2"
+using QUOTIENT_SYM[OF q] QUOTIENT_TRANS[OF q] unfolding SYM_def TRANS_def
+using a by blast
+
+lemma LAMBDA_PRS:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  shows "(\<lambda>x. f x) = (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x)))"
+unfolding expand_fun_eq
+using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2]
+by simp
+
+lemma LAMBDA_PRS1:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  shows "(\<lambda>x. f x) = (Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x)"
+unfolding expand_fun_eq
+by (subst LAMBDA_PRS[OF q1 q2]) (simp)
+
+(* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *)
+lemma LAMBDA_RSP:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  and     a: "(R1 ===> R2) f1 f2"
+  shows "(R1 ===> R2) (\<lambda>x. f1 x) (\<lambda>y. f2 y)"
+by (rule a)
+
+(* ASK Peter about next four lemmas in quotientScript
+lemma ABSTRACT_PRS:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  shows "f = (Rep1 ---> Abs2) ???"
+*)
+
+lemma LAMBDA_REP_ABS_RSP:
+  assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))"
+  and     r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))"
+  shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))"
+using r1 r2 by auto
+
+lemma REP_ABS_RSP:
+  assumes q: "QUOTIENT R Abs Rep"
+  and     a: "R x1 x2"
+  shows "R x1 (Rep (Abs x2))"
+using a
+by (metis QUOTIENT_REL[OF q] QUOTIENT_ABS_REP[OF q] QUOTIENT_REP_REFL[OF q])
+
+(* ----------------------------------------------------- *)
+(* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE,           *)
+(*              RES_FORALL, RES_EXISTS, RES_EXISTS_EQUIV *)
+(* ----------------------------------------------------- *)
+
+(* what is RES_FORALL *)
+(*--`!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==>
+         !f. $! f = RES_FORALL (respects R) ((abs --> I) f)`--*)
+(*as peter here *)
+
+(* bool theory: COND, LET *)
+
+lemma IF_PRS:
+  assumes q: "QUOTIENT R Abs Rep"
+  shows "If a b c = Abs (If a (Rep b) (Rep c))"
+using QUOTIENT_ABS_REP[OF q] by auto
+
+(* ask peter: no use of q *)
+lemma IF_RSP:
+  assumes q: "QUOTIENT R Abs Rep"
+  and     a: "a1 = a2" "R b1 b2" "R c1 c2"
+  shows "R (If a1 b1 c1) (If a2 b2 c2)"
+using a by auto
+
+lemma LET_PRS:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))"
+using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto
+
+lemma LET_RSP:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  and     a1: "(R1 ===> R2) f g"
+  and     a2: "R1 x y"
+  shows "R2 (Let x f) (Let y g)"
+using FUN_REL_MP[OF q1 q2 a1] a2
+by auto
+
+
+(* ask peter what are literal_case *)
+(* literal_case_PRS *)
+(* literal_case_RSP *)
+
+
+(* FUNCTION APPLICATION *)
+
+lemma APPLY_PRS:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  shows "f x = Abs2 (((Abs1 ---> Rep2) f) (Rep1 x))"
+using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto
+
+(* ask peter: no use of q1 q2 *)
+lemma APPLY_RSP:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  and     a: "(R1 ===> R2) f g" "R1 x y"
+  shows "R2 (f x) (g y)"
+using a by (rule FUN_REL_IMP)
+
+
+(* combinators: I, K, o, C, W *)
+
+lemma I_PRS:
+  assumes q: "QUOTIENT R Abs Rep"
+  shows "(\<lambda>x. x) e = Abs ((\<lambda> x. x) (Rep e))"
+using QUOTIENT_ABS_REP[OF q] by auto
+
+lemma I_RSP:
+  assumes q: "QUOTIENT R Abs Rep"
+  and     a: "R e1 e2"
+  shows "R ((\<lambda>x. x) e1) ((\<lambda> x. x) e2)"
+using a by auto
+
+lemma o_PRS:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  and     q3: "QUOTIENT R3 Abs3 Rep3"
+  shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))"
+using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] QUOTIENT_ABS_REP[OF q3]
+unfolding o_def expand_fun_eq
+by simp
+
+lemma o_RSP:
+  assumes q1: "QUOTIENT R1 Abs1 Rep1"
+  and     q2: "QUOTIENT R2 Abs2 Rep2"
+  and     q3: "QUOTIENT R3 Abs3 Rep3"
+  and     a1: "(R2 ===> R3) f1 f2"
+  and     a2: "(R1 ===> R2) g1 g2"
+  shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
+using a1 a2 unfolding o_def expand_fun_eq
+by (auto)
+
+end
\ No newline at end of file