diff -r 000000000000 -r ebe0ea8fe247 QuotScript.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/QuotScript.thy Tue Aug 11 12:29:15 2009 +0200 @@ -0,0 +1,401 @@ +theory QuotScript +imports Main +begin + +definition + "EQUIV E \ \x y. E x y = (E x = E y)" + +definition + "REFL E \ \x. E x x" + +definition + "SYM E \ \x y. E x y \ E y x" + +definition + "TRANS E \ \x y z. E x y \ E y z \ E x z" + +lemma EQUIV_REFL_SYM_TRANS: + shows "EQUIV E = (REFL E \ SYM E \ TRANS E)" +unfolding EQUIV_def REFL_def SYM_def TRANS_def expand_fun_eq +by (blast) + +definition + "PART_EQUIV E \ (\x. E x x) \ (\x y. E x y = (E x x \ E y y \ (E x = E y)))" + +lemma EQUIV_IMP_PART_EQUIV: + assumes a: "EQUIV E" + shows "PART_EQUIV E" +using a unfolding EQUIV_def PART_EQUIV_def +by auto + +definition + "QUOTIENT E Abs Rep \ (\a. Abs (Rep a) = a) \ + (\a. E (Rep a) (Rep a)) \ + (\r s. E r s = (E r r \ E s s \ (Abs r = Abs s)))" + +lemma QUOTIENT_ABS_REP: + assumes a: "QUOTIENT E Abs Rep" + shows "Abs (Rep a) = a" +using a unfolding QUOTIENT_def +by simp + +lemma QUOTIENT_REP_REFL: + assumes a: "QUOTIENT E Abs Rep" + shows "E (Rep a) (Rep a)" +using a unfolding QUOTIENT_def +by blast + +lemma QUOTIENT_REL: + assumes a: "QUOTIENT E Abs Rep" + shows " E r s = (E r r \ E s s \ (Abs r = Abs s))" +using a unfolding QUOTIENT_def +by blast + +lemma QUOTIENT_REL_ABS: + assumes a: "QUOTIENT E Abs Rep" + shows "E r s \ Abs r = Abs s" +using a unfolding QUOTIENT_def +by blast + +lemma QUOTIENT_REL_ABS_EQ: + assumes a: "QUOTIENT E Abs Rep" + shows "E r r \ E s s \ E r s = (Abs r = Abs s)" +using a unfolding QUOTIENT_def +by blast + +lemma QUOTIENT_REL_REP: + assumes a: "QUOTIENT E Abs Rep" + shows "E (Rep a) (Rep b) = (a = b)" +using a unfolding QUOTIENT_def +by metis + +lemma QUOTIENT_REP_ABS: + assumes a: "QUOTIENT E Abs Rep" + shows "E r r \ E (Rep (Abs r)) r" +using a unfolding QUOTIENT_def +by blast + +lemma IDENTITY_EQUIV: + shows "EQUIV (op =)" +unfolding EQUIV_def +by auto + +lemma IDENTITY_QUOTIENT: + shows "QUOTIENT (op =) (\x. x) (\x. x)" +unfolding QUOTIENT_def +by blast + +lemma QUOTIENT_SYM: + assumes a: "QUOTIENT E Abs Rep" + shows "SYM E" +using a unfolding QUOTIENT_def SYM_def +by metis + +lemma QUOTIENT_TRANS: + assumes a: "QUOTIENT E Abs Rep" + shows "TRANS E" +using a unfolding QUOTIENT_def TRANS_def +by metis + +fun + fun_map +where + "fun_map f g h x = g (h (f x))" + +abbreviation + fun_map_syn ("_ ---> _") +where + "f ---> g \ fun_map f g" + +lemma FUN_MAP_I: + shows "(\x. x ---> \x. x) = (\x. x)" +by (simp add: expand_fun_eq) + +lemma IN_FUN: + shows "x \ ((f ---> g) s) = g (f x \ s)" +by (simp add: mem_def) + +fun + FUN_REL +where + "FUN_REL E1 E2 f g = (\x y. E1 x y \ E2 (f x) (g y))" + +abbreviation + FUN_REL_syn ("_ ===> _") +where + "E1 ===> E2 \ FUN_REL E1 E2" + +lemma FUN_REL_EQ: + "(op =) ===> (op =) = (op =)" +by (simp add: expand_fun_eq) + +lemma FUN_QUOTIENT: + assumes q1: "QUOTIENT R1 abs1 rep1" + and q2: "QUOTIENT R2 abs2 rep2" + shows "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" +proof - + have "\a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" + apply(simp add: expand_fun_eq) + using q1 q2 + apply(simp add: QUOTIENT_def) + done + moreover + have "\a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" + apply(auto) + using q1 q2 unfolding QUOTIENT_def + apply(metis) + done + moreover + have "\r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \ (R1 ===> R2) s s \ + (rep1 ---> abs2) r = (rep1 ---> abs2) s)" + apply(auto simp add: expand_fun_eq) + using q1 q2 unfolding QUOTIENT_def + apply(metis) + using q1 q2 unfolding QUOTIENT_def + apply(metis) + using q1 q2 unfolding QUOTIENT_def + apply(metis) + using q1 q2 unfolding QUOTIENT_def + apply(metis) + done + ultimately + show "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" + unfolding QUOTIENT_def by blast +qed + +definition + Respects +where + "Respects R x \ (R x x)" + +lemma IN_RESPECTS: + shows "(x \ Respects R) = R x x" +unfolding mem_def Respects_def by simp + +lemma RESPECTS_THM: + shows "Respects (R1 ===> R2) f = (\x y. R1 x y \ R2 (f x) (f y))" +unfolding Respects_def +by (simp add: expand_fun_eq) + +lemma RESPECTS_MP: + assumes a: "Respects (R1 ===> R2) f" + and b: "R1 x y" + shows "R2 (f x) (f y)" +using a b unfolding Respects_def +by simp + +lemma RESPECTS_REP_ABS: + assumes a: "QUOTIENT R1 Abs1 Rep1" + and b: "Respects (R1 ===> R2) f" + and c: "R1 x x" + shows "R2 (f (Rep1 (Abs1 x))) (f x)" +using a b[simplified RESPECTS_THM] c unfolding QUOTIENT_def +by blast + +lemma RESPECTS_o: + assumes a: "Respects (R2 ===> R3) f" + and b: "Respects (R1 ===> R2) g" + shows "Respects (R1 ===> R3) (f o g)" +using a b unfolding Respects_def +by simp + +(* +definition + "RES_EXISTS_EQUIV R P \ (\x \ Respects R. P x) \ + (\x\ Respects R. \y\ Respects R. P x \ P y \ R x y)" +*) + +lemma FUN_REL_EQ_REL: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \ (Respects (R1 ===> R2) g) + \ ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))" +using FUN_QUOTIENT[OF q1 q2] unfolding Respects_def QUOTIENT_def expand_fun_eq +by blast + +(* q1 and q2 not used; see next lemma *) +lemma FUN_REL_MP: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + shows "(R1 ===> R2) f g \ R1 x y \ R2 (f x) (g y)" +by simp + +lemma FUN_REL_IMP: + shows "(R1 ===> R2) f g \ R1 x y \ R2 (f x) (g y)" +by simp + +lemma FUN_REL_EQUALS: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + and r1: "Respects (R1 ===> R2) f" + and r2: "Respects (R1 ===> R2) g" + shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\x y. R1 x y \ R2 (f x) (g y))" +apply(rule_tac iffI) +using FUN_QUOTIENT[OF q1 q2] r1 r2 unfolding QUOTIENT_def Respects_def +apply(metis FUN_REL_IMP) +using r1 unfolding Respects_def expand_fun_eq +apply(simp (no_asm_use)) +apply(metis QUOTIENT_REL[OF q2] QUOTIENT_REL_REP[OF q1]) +done + +(* ask Peter: FUN_REL_IMP used twice *) +lemma FUN_REL_IMP2: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + and r1: "Respects (R1 ===> R2) f" + and r2: "Respects (R1 ===> R2) g" + and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g" + shows "R1 x y \ R2 (f x) (g y)" +using q1 q2 r1 r2 a +by (simp add: FUN_REL_EQUALS) + +lemma EQUALS_PRS: + assumes q: "QUOTIENT R Abs Rep" + shows "(x = y) = R (Rep x) (Rep y)" +by (simp add: QUOTIENT_REL_REP[OF q]) + +lemma EQUALS_RSP: + assumes q: "QUOTIENT R Abs Rep" + and a: "R x1 x2" "R y1 y2" + shows "R x1 y1 = R x2 y2" +using QUOTIENT_SYM[OF q] QUOTIENT_TRANS[OF q] unfolding SYM_def TRANS_def +using a by blast + +lemma LAMBDA_PRS: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + shows "(\x. f x) = (Rep1 ---> Abs2) (\x. Rep2 (f (Abs1 x)))" +unfolding expand_fun_eq +using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] +by simp + +lemma LAMBDA_PRS1: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + shows "(\x. f x) = (Rep1 ---> Abs2) (\x. (Abs1 ---> Rep2) f x)" +unfolding expand_fun_eq +by (subst LAMBDA_PRS[OF q1 q2]) (simp) + +(* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *) +lemma LAMBDA_RSP: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + and a: "(R1 ===> R2) f1 f2" + shows "(R1 ===> R2) (\x. f1 x) (\y. f2 y)" +by (rule a) + +(* ASK Peter about next four lemmas in quotientScript +lemma ABSTRACT_PRS: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + shows "f = (Rep1 ---> Abs2) ???" +*) + +lemma LAMBDA_REP_ABS_RSP: + assumes r1: "\r r'. R1 r r' \R1 r (Rep1 (Abs1 r'))" + and r2: "\r r'. R2 r r' \R2 r (Rep2 (Abs2 r'))" + shows "(R1 ===> R2) f1 f2 \ (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))" +using r1 r2 by auto + +lemma REP_ABS_RSP: + assumes q: "QUOTIENT R Abs Rep" + and a: "R x1 x2" + shows "R x1 (Rep (Abs x2))" +using a +by (metis QUOTIENT_REL[OF q] QUOTIENT_ABS_REP[OF q] QUOTIENT_REP_REFL[OF q]) + +(* ----------------------------------------------------- *) +(* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE, *) +(* RES_FORALL, RES_EXISTS, RES_EXISTS_EQUIV *) +(* ----------------------------------------------------- *) + +(* what is RES_FORALL *) +(*--`!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==> + !f. $! f = RES_FORALL (respects R) ((abs --> I) f)`--*) +(*as peter here *) + +(* bool theory: COND, LET *) + +lemma IF_PRS: + assumes q: "QUOTIENT R Abs Rep" + shows "If a b c = Abs (If a (Rep b) (Rep c))" +using QUOTIENT_ABS_REP[OF q] by auto + +(* ask peter: no use of q *) +lemma IF_RSP: + assumes q: "QUOTIENT R Abs Rep" + and a: "a1 = a2" "R b1 b2" "R c1 c2" + shows "R (If a1 b1 c1) (If a2 b2 c2)" +using a by auto + +lemma LET_PRS: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))" +using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto + +lemma LET_RSP: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + and a1: "(R1 ===> R2) f g" + and a2: "R1 x y" + shows "R2 (Let x f) (Let y g)" +using FUN_REL_MP[OF q1 q2 a1] a2 +by auto + + +(* ask peter what are literal_case *) +(* literal_case_PRS *) +(* literal_case_RSP *) + + +(* FUNCTION APPLICATION *) + +lemma APPLY_PRS: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + shows "f x = Abs2 (((Abs1 ---> Rep2) f) (Rep1 x))" +using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto + +(* ask peter: no use of q1 q2 *) +lemma APPLY_RSP: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + and a: "(R1 ===> R2) f g" "R1 x y" + shows "R2 (f x) (g y)" +using a by (rule FUN_REL_IMP) + + +(* combinators: I, K, o, C, W *) + +lemma I_PRS: + assumes q: "QUOTIENT R Abs Rep" + shows "(\x. x) e = Abs ((\ x. x) (Rep e))" +using QUOTIENT_ABS_REP[OF q] by auto + +lemma I_RSP: + assumes q: "QUOTIENT R Abs Rep" + and a: "R e1 e2" + shows "R ((\x. x) e1) ((\ x. x) e2)" +using a by auto + +lemma o_PRS: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + and q3: "QUOTIENT R3 Abs3 Rep3" + shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))" +using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] QUOTIENT_ABS_REP[OF q3] +unfolding o_def expand_fun_eq +by simp + +lemma o_RSP: + assumes q1: "QUOTIENT R1 Abs1 Rep1" + and q2: "QUOTIENT R2 Abs2 Rep2" + and q3: "QUOTIENT R3 Abs3 Rep3" + and a1: "(R2 ===> R3) f1 f2" + and a2: "(R1 ===> R2) g1 g2" + shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" +using a1 a2 unfolding o_def expand_fun_eq +by (auto) + +end \ No newline at end of file