--- a/ESOP-Paper/Appendix.thy Tue Feb 19 05:38:46 2013 +0000
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,135 +0,0 @@
-(*<*)
-theory Appendix
-imports "../Nominal/Nominal2" "~~/src/HOL/Library/LaTeXsugar"
-begin
-
-consts
- fv :: "'a \<Rightarrow> 'b"
- abs_set :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
- alpha_bn :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
- abs_set2 :: "'a \<Rightarrow> perm \<Rightarrow> 'b \<Rightarrow> 'c"
- Abs_dist :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
- Abs_print :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
-
-definition
- "equal \<equiv> (op =)"
-
-notation (latex output)
- swap ("'(_ _')" [1000, 1000] 1000) and
- fresh ("_ # _" [51, 51] 50) and
- fresh_star ("_ #\<^sup>* _" [51, 51] 50) and
- supp ("supp _" [78] 73) and
- uminus ("-_" [78] 73) and
- If ("if _ then _ else _" 10) and
- alpha_set ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and
- alpha_lst ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and
- alpha_res ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{res}}$}}>\<^bsup>_, _, _\<^esup> _") and
- abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
- abs_set2 ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup> _") and
- fv ("fa'(_')" [100] 100) and
- equal ("=") and
- alpha_abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
- Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and
- Abs_lst ("[_]\<^bsub>list\<^esub>._") and
- Abs_dist ("[_]\<^bsub>#list\<^esub>._") and
- Abs_res ("[_]\<^bsub>res\<^esub>._") and
- Abs_print ("_\<^bsub>set\<^esub>._") and
- Cons ("_::_" [78,77] 73) and
- supp_set ("aux _" [1000] 10) and
- alpha_bn ("_ \<approx>bn _")
-
-consts alpha_trm ::'a
-consts fa_trm :: 'a
-consts alpha_trm2 ::'a
-consts fa_trm2 :: 'a
-consts ast :: 'a
-consts ast' :: 'a
-notation (latex output)
- alpha_trm ("\<approx>\<^bsub>trm\<^esub>") and
- fa_trm ("fa\<^bsub>trm\<^esub>") and
- alpha_trm2 ("'(\<approx>\<^bsub>assn\<^esub>, \<approx>\<^bsub>trm\<^esub>')") and
- fa_trm2 ("'(fa\<^bsub>assn\<^esub>, fa\<^bsub>trm\<^esub>')") and
- ast ("'(as, t')") and
- ast' ("'(as', t\<PRIME> ')")
-
-(*>*)
-
-text {*
-\appendix
-\section*{Appendix}
-
- Details for one case in Theorem \ref{suppabs}, which the reader might like to ignore.
- By definition of the abstraction type @{text "abs_set"}
- we have
- %
- \begin{equation}\label{abseqiff}
- @{thm (lhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\;
- @{thm (rhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]}
- \end{equation}
-
- \noindent
- and also
-
- \begin{equation}\label{absperm}
- @{thm permute_Abs(1)[no_vars]}%
- \end{equation}
-
- \noindent
- The second fact derives from the definition of permutations acting on pairs
- and $\alpha$-equivalence being equivariant. With these two facts at our disposal, we can show
- the following lemma about swapping two atoms in an abstraction.
-
- \begin{lemma}
- @{thm[mode=IfThen] Abs_swap1(1)[where bs="as", no_vars]}
- \end{lemma}
-
- \begin{proof}
- This lemma is straightforward using \eqref{abseqiff} and observing that
- the assumptions give us @{term "(a \<rightleftharpoons> b) \<bullet> (supp x - as) = (supp x - as)"}.
- Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}).
- \end{proof}
-
- \noindent
- Assuming that @{text "x"} has finite support, this lemma together
- with \eqref{absperm} allows us to show
-
- \begin{equation}\label{halfone}
- @{thm Abs_supports(1)[no_vars]}
- \end{equation}
-
- \noindent
- which gives us ``one half'' of
- Theorem~\ref{suppabs} (the notion of supports is defined in \cite{HuffmanUrban10}).
- The ``other half'' is a bit more involved. To establish
- it, we use a trick from \cite{Pitts04} and first define an auxiliary
- function @{text aux}, taking an abstraction as argument:
- @{thm supp_set.simps[THEN eq_reflection, no_vars]}.
-
- We can show that
- @{text "aux"} is equivariant (since @{term "p \<bullet> (supp x - as) = (supp (p \<bullet> x)) - (p \<bullet> as)"})
- and therefore has empty support.
- This in turn means
-
- \begin{center}
- @{text "supp (aux ([as]\<^bsub>set\<^esub>. x)) \<subseteq> supp ([as]\<^bsub>set\<^esub> x)"}
- \end{center}
-
- \noindent
- Assuming @{term "supp x - as"} is a finite set,
- we further obtain
-
- \begin{equation}\label{halftwo}
- @{thm (concl) Abs_supp_subset1(1)[no_vars]}
- \end{equation}
-
- \noindent
- since for finite sets of atoms, @{text "bs"}, we have
- @{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}.
- Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes
- Theorem~\ref{suppabs}.
-
-*}
-
-(*<*)
-end
-(*>*)