diff -r fb201e383f1b -r da575186d492 ESOP-Paper/Appendix.thy --- a/ESOP-Paper/Appendix.thy Tue Feb 19 05:38:46 2013 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,135 +0,0 @@ -(*<*) -theory Appendix -imports "../Nominal/Nominal2" "~~/src/HOL/Library/LaTeXsugar" -begin - -consts - fv :: "'a \ 'b" - abs_set :: "'a \ 'b \ 'c" - alpha_bn :: "'a \ 'a \ bool" - abs_set2 :: "'a \ perm \ 'b \ 'c" - Abs_dist :: "'a \ 'b \ 'c" - Abs_print :: "'a \ 'b \ 'c" - -definition - "equal \ (op =)" - -notation (latex output) - swap ("'(_ _')" [1000, 1000] 1000) and - fresh ("_ # _" [51, 51] 50) and - fresh_star ("_ #\<^sup>* _" [51, 51] 50) and - supp ("supp _" [78] 73) and - uminus ("-_" [78] 73) and - If ("if _ then _ else _" 10) and - alpha_set ("_ \\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and - alpha_lst ("_ \\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and - alpha_res ("_ \\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{res}}$}}>\<^bsup>_, _, _\<^esup> _") and - abs_set ("_ \\<^raw:{$\,_{\textit{abs\_set}}$}> _") and - abs_set2 ("_ \\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup> _") and - fv ("fa'(_')" [100] 100) and - equal ("=") and - alpha_abs_set ("_ \\<^raw:{$\,_{\textit{abs\_set}}$}> _") and - Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and - Abs_lst ("[_]\<^bsub>list\<^esub>._") and - Abs_dist ("[_]\<^bsub>#list\<^esub>._") and - Abs_res ("[_]\<^bsub>res\<^esub>._") and - Abs_print ("_\<^bsub>set\<^esub>._") and - Cons ("_::_" [78,77] 73) and - supp_set ("aux _" [1000] 10) and - alpha_bn ("_ \bn _") - -consts alpha_trm ::'a -consts fa_trm :: 'a -consts alpha_trm2 ::'a -consts fa_trm2 :: 'a -consts ast :: 'a -consts ast' :: 'a -notation (latex output) - alpha_trm ("\\<^bsub>trm\<^esub>") and - fa_trm ("fa\<^bsub>trm\<^esub>") and - alpha_trm2 ("'(\\<^bsub>assn\<^esub>, \\<^bsub>trm\<^esub>')") and - fa_trm2 ("'(fa\<^bsub>assn\<^esub>, fa\<^bsub>trm\<^esub>')") and - ast ("'(as, t')") and - ast' ("'(as', t\ ')") - -(*>*) - -text {* -\appendix -\section*{Appendix} - - Details for one case in Theorem \ref{suppabs}, which the reader might like to ignore. - By definition of the abstraction type @{text "abs_set"} - we have - % - \begin{equation}\label{abseqiff} - @{thm (lhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\; - @{thm (rhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} - \end{equation} - - \noindent - and also - - \begin{equation}\label{absperm} - @{thm permute_Abs(1)[no_vars]}% - \end{equation} - - \noindent - The second fact derives from the definition of permutations acting on pairs - and $\alpha$-equivalence being equivariant. With these two facts at our disposal, we can show - the following lemma about swapping two atoms in an abstraction. - - \begin{lemma} - @{thm[mode=IfThen] Abs_swap1(1)[where bs="as", no_vars]} - \end{lemma} - - \begin{proof} - This lemma is straightforward using \eqref{abseqiff} and observing that - the assumptions give us @{term "(a \ b) \ (supp x - as) = (supp x - as)"}. - Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}). - \end{proof} - - \noindent - Assuming that @{text "x"} has finite support, this lemma together - with \eqref{absperm} allows us to show - - \begin{equation}\label{halfone} - @{thm Abs_supports(1)[no_vars]} - \end{equation} - - \noindent - which gives us ``one half'' of - Theorem~\ref{suppabs} (the notion of supports is defined in \cite{HuffmanUrban10}). - The ``other half'' is a bit more involved. To establish - it, we use a trick from \cite{Pitts04} and first define an auxiliary - function @{text aux}, taking an abstraction as argument: - @{thm supp_set.simps[THEN eq_reflection, no_vars]}. - - We can show that - @{text "aux"} is equivariant (since @{term "p \ (supp x - as) = (supp (p \ x)) - (p \ as)"}) - and therefore has empty support. - This in turn means - - \begin{center} - @{text "supp (aux ([as]\<^bsub>set\<^esub>. x)) \ supp ([as]\<^bsub>set\<^esub> x)"} - \end{center} - - \noindent - Assuming @{term "supp x - as"} is a finite set, - we further obtain - - \begin{equation}\label{halftwo} - @{thm (concl) Abs_supp_subset1(1)[no_vars]} - \end{equation} - - \noindent - since for finite sets of atoms, @{text "bs"}, we have - @{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}. - Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes - Theorem~\ref{suppabs}. - -*} - -(*<*) -end -(*>*)