--- a/Nominal/Ex/Let.thy Mon Jun 20 09:38:57 2011 +0900
+++ b/Nominal/Ex/Let.thy Mon Jun 20 09:59:18 2011 +0900
@@ -90,33 +90,6 @@
lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
-lemma Abs_lst_fcb:
- fixes xs ys :: "'a :: fs"
- and S T :: "'b :: fs"
- assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
- and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
- and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
- and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
- shows "f xs T = f ys S"
- using e apply -
- apply(subst (asm) Abs_eq_iff2)
- apply(simp add: alphas)
- apply(elim exE conjE)
- apply(rule trans)
- apply(rule_tac p="p" in supp_perm_eq[symmetric])
- apply(rule fresh_star_supp_conv)
- apply(drule fresh_star_perm_set_conv)
- apply(rule finite_Diff)
- apply(rule finite_supp)
- apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
- apply(metis Un_absorb2 fresh_star_Un)
- apply(subst fresh_star_Un)
- apply(rule conjI)
- apply(simp add: fresh_star_def f1)
- apply(simp add: fresh_star_def f2)
- apply(simp add: eqv)
- done
-
lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
by (simp add: permute_pure)