--- a/QuotMain.thy Mon Sep 21 10:53:01 2009 +0200
+++ b/QuotMain.thy Mon Sep 21 16:45:44 2009 +0200
@@ -114,11 +114,12 @@
qed
lemma REPS_same:
- shows "R (REP a) (REP b) = (a = b)"
+ shows "R (REP a) (REP b) \<equiv> (a = b)"
+ apply (rule eq_reflection)
proof
assume as: "R (REP a) (REP b)"
from rep_prop
- obtain x y
+ obtain x y
where eqs: "Rep a = R x" "Rep b = R y" by blast
from eqs have "R (Eps (R x)) (Eps (R y))" using as unfolding REP_def by simp
then have "R x (Eps (R y))" using lem9 by simp
@@ -827,7 +828,7 @@
ML {*@{thm arg_cong2}*}
ML {*@{thm arg_cong2[of _ _ _ _ "op ="]} *}
ML {* val cT = @{cpat "op ="} |> Thm.ctyp_of_term |> Thm.dest_ctyp |> hd *}
-ML {*
+ML {*
Toplevel.program (fn () =>
Drule.instantiate' [SOME cT,SOME cT,SOME @{ctyp bool}] [NONE,NONE,NONE,NONE,SOME (@{cpat "op ="})] @{thm arg_cong2}
)
@@ -851,8 +852,8 @@
val concl = Thm.cprem_of thm n;
val (_, cconcl) = Thm.dest_comb concl;
val rewr = foo_conv cconcl;
- val _ = tracing (Display.string_of_thm @{context} rewr)
- val _ = tracing (Display.string_of_thm @{context} thm)
+(* val _ = tracing (Display.string_of_thm @{context} rewr)
+ val _ = tracing (Display.string_of_thm @{context} thm)*)
in
rtac rewr n thm
end
@@ -862,14 +863,15 @@
(* Has all the theorems about fset plugged in. These should be parameters to the tactic *)
ML {*
- val foo_tac' =
- FIRST' [
+ fun foo_tac' ctxt =
+ REPEAT_ALL_NEW (FIRST' [
rtac @{thm list_eq_sym},
rtac @{thm cons_preserves},
rtac @{thm mem_respects},
- foo_tac,
- simp_tac (@{simpset} addsimps @{thms QUOT_TYPE_I_fset.REP_ABS_rsp})
- ]
+ rtac @{thm QUOT_TYPE_I_fset.R_trans2},
+ CHANGED o (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms QUOT_TYPE_I_fset.REP_ABS_rsp})),
+ foo_tac
+ ])
*}
thm m1
@@ -883,11 +885,7 @@
prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
+ apply (tactic {* foo_tac' @{context} 1 *})
done
@@ -898,13 +896,10 @@
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
-(* prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
+prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 2 *})
- apply (tactic {* foo_tac' 2 *})
- apply (tactic {* foo_tac' 2 *})
- apply (tactic {* foo_tac' 1 *}) *)
+ apply (tactic {* foo_tac' @{context} 1 *})
+ sorry
thm m2
ML {*
@@ -915,19 +910,7 @@
*}
prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
+ apply (tactic {* foo_tac' @{context} 1 *})
done
thm list_eq.intros(4)
@@ -942,19 +925,10 @@
(* It is the same, but we need a name for it. *)
prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal3) *} sorry
lemma zzz :
- "(REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx>
- REP_fset (INSERT a (ABS_fset xs))) = (a # a # xs \<approx> a # xs)"
+ "(REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx> REP_fset (INSERT a (ABS_fset xs)))
+ = (a # a # xs \<approx> a # xs)"
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
- apply (simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
- apply (rule QUOT_TYPE_I_fset.R_trans2)
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
+ apply (tactic {* foo_tac' @{context} 1 *})
done
lemma zzz' :
@@ -962,7 +936,20 @@
using list_eq.intros(4) by (simp only: zzz)
thm QUOT_TYPE_I_fset.REPS_same
-ML {* MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} @{thm zzz'} *}
+ML {* val zzz'' = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} @{thm zzz'} *}
+
+ML Drule.instantiate'
+ML {* zzz'' *}
+text {*
+ A variable export will still be necessary in the end, but this is already the final theorem.
+*}
+ML {*
+ Toplevel.program (fn () =>
+ MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
+ Drule.instantiate' [] [NONE,SOME (@{cpat "REP_fset x"})] zzz''
+ )
+ )
+*}
thm list_eq.intros(5)
ML {*
@@ -973,15 +960,7 @@
*}
prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
- apply (rule QUOT_TYPE_I_fset.R_trans2)
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
- apply (tactic {* foo_tac' 1 *})
+ apply (tactic {* foo_tac' @{context} 1 *})
done
(*