--- a/QuotMain.thy Sun Sep 20 05:48:49 2009 +0100
+++ b/QuotMain.thy Mon Sep 21 10:53:01 2009 +0200
@@ -29,8 +29,9 @@
qed
theorem thm10:
- shows "ABS (REP a) = a"
-unfolding ABS_def REP_def
+ shows "ABS (REP a) \<equiv> a"
+ apply (rule eq_reflection)
+ unfolding ABS_def REP_def
proof -
from rep_prop
obtain x where eq: "Rep a = R x" by auto
@@ -761,7 +762,7 @@
(UNION EMPTY s = s) &
((UNION (INSERT e s1) s2) = (INSERT e (UNION s1 s2)))"
apply (simp add: yyy)
- apply (rule QUOT_TYPE_I_fset.thm10)
+ apply (simp add: QUOT_TYPE_I_fset.thm10)
done
ML {*
@@ -935,20 +936,16 @@
val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
- (* Why doesn't this work? *)
- val cgoal3 = Thm.rhs_of (MetaSimplifier.rewrite true @{thms QUOT_TYPE_I_fset.thm10 QUOT_TYPE_I_fset.REPS_same} cgoal2)
+ val cgoal3 = Thm.rhs_of (MetaSimplifier.rewrite true @{thms QUOT_TYPE_I_fset.thm10} cgoal2)
*}
-thm QUOT_TYPE_I_fset.thm10
-thm QUOT_TYPE_I_fset.REPS_same
-(* keep it commented out, until we get a proving mechanism *)
-(*prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal3) *}*)
-lemma zzz :
- "(REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx>
+(* It is the same, but we need a name for it. *)
+prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal3) *} sorry
+lemma zzz :
+ "(REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx>
REP_fset (INSERT a (ABS_fset xs))) = (a # a # xs \<approx> a # xs)"
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
-(* apply (simp only: QUOT_TYPE_I_fset.thm10)*)
apply (rule QUOT_TYPE_I_fset.R_trans2)
apply (tactic {* foo_tac' 1 *})
apply (tactic {* foo_tac' 1 *})
@@ -960,6 +957,13 @@
apply (tactic {* foo_tac' 1 *})
done
+lemma zzz' :
+ "(REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx> REP_fset (INSERT a (ABS_fset xs)))"
+ using list_eq.intros(4) by (simp only: zzz)
+
+thm QUOT_TYPE_I_fset.REPS_same
+ML {* MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} @{thm zzz'} *}
+
thm list_eq.intros(5)
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm list_eq.intros(5)}))