--- a/Nominal/Nominal2.thy Mon Apr 01 23:22:53 2013 +0100
+++ b/Nominal/Nominal2.thy Fri Apr 19 00:10:52 2013 +0100
@@ -28,7 +28,7 @@
(****************************************************)
(* inductive definition involving nominal datatypes *)
-ML_file "nominal_inductive.ML"
+ML_file "nominal_inductive.ML"
(***************************************)
@@ -442,15 +442,17 @@
(* postprocessing of eq and fv theorems *)
val qeq_iffs' = qeq_iffs
- |> map (simplify (HOL_basic_ss addsimps qfv_supp_thms))
- |> map (simplify (HOL_basic_ss addsimps @{thms prod_fv_supp prod_alpha_eq Abs_eq_iff[symmetric]}))
+ |> map (simplify (put_simpset HOL_basic_ss lthyC addsimps qfv_supp_thms))
+ |> map (simplify (put_simpset HOL_basic_ss lthyC
+ addsimps @{thms prod_fv_supp prod_alpha_eq Abs_eq_iff[symmetric]}))
(* filters the theorems that are of the form "qfv = supp" *)
fun is_qfv_thm (@{term Trueprop} $ (Const (@{const_name HOL.eq}, _) $ lhs $ _)) = member (op=) qfvs lhs
| is_qfv_thm _ = false
val qsupp_constrs = qfv_defs
- |> map (simplify (HOL_basic_ss addsimps (filter (is_qfv_thm o prop_of) qfv_supp_thms)))
+ |> map (simplify (put_simpset HOL_basic_ss lthyC
+ addsimps (filter (is_qfv_thm o prop_of) qfv_supp_thms)))
val transform_thm = @{lemma "x = y \<Longrightarrow> a \<notin> x \<longleftrightarrow> a \<notin> y" by simp}
val transform_thms =
@@ -461,7 +463,7 @@
val qfresh_constrs = qsupp_constrs
|> map (fn thm => thm RS transform_thm)
- |> map (simplify (HOL_basic_ss addsimps transform_thms))
+ |> map (simplify (put_simpset HOL_basic_ss lthyC addsimps transform_thms))
(* proving that the qbn result is finite *)
val qbn_finite_thms = prove_bns_finite qtys qbns qinduct qbn_defs lthyC