diff -r d67a6a48f1c7 -r 89158f401b07 Nominal/Nominal2.thy --- a/Nominal/Nominal2.thy Mon Apr 01 23:22:53 2013 +0100 +++ b/Nominal/Nominal2.thy Fri Apr 19 00:10:52 2013 +0100 @@ -28,7 +28,7 @@ (****************************************************) (* inductive definition involving nominal datatypes *) -ML_file "nominal_inductive.ML" +ML_file "nominal_inductive.ML" (***************************************) @@ -442,15 +442,17 @@ (* postprocessing of eq and fv theorems *) val qeq_iffs' = qeq_iffs - |> map (simplify (HOL_basic_ss addsimps qfv_supp_thms)) - |> map (simplify (HOL_basic_ss addsimps @{thms prod_fv_supp prod_alpha_eq Abs_eq_iff[symmetric]})) + |> map (simplify (put_simpset HOL_basic_ss lthyC addsimps qfv_supp_thms)) + |> map (simplify (put_simpset HOL_basic_ss lthyC + addsimps @{thms prod_fv_supp prod_alpha_eq Abs_eq_iff[symmetric]})) (* filters the theorems that are of the form "qfv = supp" *) fun is_qfv_thm (@{term Trueprop} $ (Const (@{const_name HOL.eq}, _) $ lhs $ _)) = member (op=) qfvs lhs | is_qfv_thm _ = false val qsupp_constrs = qfv_defs - |> map (simplify (HOL_basic_ss addsimps (filter (is_qfv_thm o prop_of) qfv_supp_thms))) + |> map (simplify (put_simpset HOL_basic_ss lthyC + addsimps (filter (is_qfv_thm o prop_of) qfv_supp_thms))) val transform_thm = @{lemma "x = y \ a \ x \ a \ y" by simp} val transform_thms = @@ -461,7 +463,7 @@ val qfresh_constrs = qsupp_constrs |> map (fn thm => thm RS transform_thm) - |> map (simplify (HOL_basic_ss addsimps transform_thms)) + |> map (simplify (put_simpset HOL_basic_ss lthyC addsimps transform_thms)) (* proving that the qbn result is finite *) val qbn_finite_thms = prove_bns_finite qtys qbns qinduct qbn_defs lthyC