--- a/Quot/Nominal/Abs.thy Wed Feb 24 17:32:43 2010 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,506 +0,0 @@
-theory Abs
-imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../Quotient" "../Quotient_Product"
-begin
-
-(* the next three lemmas that should be in Nominal \<dots>\<dots>must be cleaned *)
-lemma ball_image:
- shows "(\<forall>x \<in> p \<bullet> S. P x) = (\<forall>x \<in> S. P (p \<bullet> x))"
-apply(auto)
-apply(drule_tac x="p \<bullet> x" in bspec)
-apply(simp add: mem_permute_iff)
-apply(simp)
-apply(drule_tac x="(- p) \<bullet> x" in bspec)
-apply(rule_tac p1="p" in mem_permute_iff[THEN iffD1])
-apply(simp)
-apply(simp)
-done
-
-lemma fresh_star_plus:
- fixes p q::perm
- shows "\<lbrakk>a \<sharp>* p; a \<sharp>* q\<rbrakk> \<Longrightarrow> a \<sharp>* (p + q)"
- unfolding fresh_star_def
- by (simp add: fresh_plus_perm)
-
-lemma fresh_star_permute_iff:
- shows "(p \<bullet> a) \<sharp>* (p \<bullet> x) \<longleftrightarrow> a \<sharp>* x"
-apply(simp add: fresh_star_def)
-apply(simp add: ball_image)
-apply(simp add: fresh_permute_iff)
-done
-
-fun
- alpha_gen
-where
- alpha_gen[simp del]:
- "alpha_gen (bs, x) R f pi (cs, y) \<longleftrightarrow> f x - bs = f y - cs \<and> (f x - bs) \<sharp>* pi \<and> R (pi \<bullet> x) y"
-
-notation
- alpha_gen ("_ \<approx>gen _ _ _ _" [100, 100, 100, 100, 100] 100)
-
-lemma [mono]: "R1 \<le> R2 \<Longrightarrow> alpha_gen x R1 \<le> alpha_gen x R2"
- by (cases x) (auto simp add: le_fun_def le_bool_def alpha_gen.simps)
-
-lemma alpha_gen_refl:
- assumes a: "R x x"
- shows "(bs, x) \<approx>gen R f 0 (bs, x)"
- using a by (simp add: alpha_gen fresh_star_def fresh_zero_perm)
-
-lemma alpha_gen_sym:
- assumes a: "(bs, x) \<approx>gen R f p (cs, y)"
- and b: "R (p \<bullet> x) y \<Longrightarrow> R (- p \<bullet> y) x"
- shows "(cs, y) \<approx>gen R f (- p) (bs, x)"
- using a b by (simp add: alpha_gen fresh_star_def fresh_def supp_minus_perm)
-
-lemma alpha_gen_trans:
- assumes a: "(bs, x) \<approx>gen R f p1 (cs, y)"
- and b: "(cs, y) \<approx>gen R f p2 (ds, z)"
- and c: "\<lbrakk>R (p1 \<bullet> x) y; R (p2 \<bullet> y) z\<rbrakk> \<Longrightarrow> R ((p2 + p1) \<bullet> x) z"
- shows "(bs, x) \<approx>gen R f (p2 + p1) (ds, z)"
- using a b c using supp_plus_perm
- apply(simp add: alpha_gen fresh_star_def fresh_def)
- apply(blast)
- done
-
-lemma alpha_gen_eqvt:
- assumes a: "(bs, x) \<approx>gen R f q (cs, y)"
- and b: "R (q \<bullet> x) y \<Longrightarrow> R (p \<bullet> (q \<bullet> x)) (p \<bullet> y)"
- and c: "p \<bullet> (f x) = f (p \<bullet> x)"
- and d: "p \<bullet> (f y) = f (p \<bullet> y)"
- shows "(p \<bullet> bs, p \<bullet> x) \<approx>gen R f (p \<bullet> q) (p \<bullet> cs, p \<bullet> y)"
- using a b
- apply(simp add: alpha_gen c[symmetric] d[symmetric] Diff_eqvt[symmetric])
- apply(simp add: permute_eqvt[symmetric])
- apply(simp add: fresh_star_permute_iff)
- apply(clarsimp)
- done
-
-lemma alpha_gen_compose_sym:
- assumes b: "\<exists>pi. (aa, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> R x2 x1) f pi (ab, s)"
- and a: "\<And>pi t s. (R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s))"
- shows "\<exists>pi. (ab, s) \<approx>gen R f pi (aa, t)"
- using b apply -
- apply(erule exE)
- apply(rule_tac x="- pi" in exI)
- apply(simp add: alpha_gen.simps)
- apply(erule conjE)+
- apply(rule conjI)
- apply(simp add: fresh_star_def fresh_minus_perm)
- apply(subgoal_tac "R (- pi \<bullet> s) ((- pi) \<bullet> (pi \<bullet> t))")
- apply simp
- apply(rule a)
- apply assumption
- done
-
-lemma alpha_gen_compose_trans:
- assumes b: "\<exists>pi\<Colon>perm. (aa, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> (\<forall>x. R x2 x \<longrightarrow> R x1 x)) f pi (ab, ta)"
- and c: "\<exists>pi\<Colon>perm. (ab, ta) \<approx>gen R f pi (ac, sa)"
- and a: "\<And>pi t s. (R t s \<Longrightarrow> R (pi \<bullet> t) (pi \<bullet> s))"
- shows "\<exists>pi\<Colon>perm. (aa, t) \<approx>gen R f pi (ac, sa)"
- using b c apply -
- apply(simp add: alpha_gen.simps)
- apply(erule conjE)+
- apply(erule exE)+
- apply(erule conjE)+
- apply(rule_tac x="pia + pi" in exI)
- apply(simp add: fresh_star_plus)
- apply(drule_tac x="- pia \<bullet> sa" in spec)
- apply(drule mp)
- apply(rotate_tac 4)
- apply(drule_tac pi="- pia" in a)
- apply(simp)
- apply(rotate_tac 6)
- apply(drule_tac pi="pia" in a)
- apply(simp)
- done
-
-lemma alpha_gen_atom_eqvt:
- assumes a: "\<And>x. pi \<bullet> (f x) = f (pi \<bullet> x)"
- and b: "\<exists>pia. ({atom a}, t) \<approx>gen (\<lambda>x1 x2. R x1 x2 \<and> R (pi \<bullet> x1) (pi \<bullet> x2)) f pia ({atom b}, s)"
- shows "\<exists>pia. ({atom (pi \<bullet> a)}, pi \<bullet> t) \<approx>gen R f pia ({atom (pi \<bullet> b)}, pi \<bullet> s)"
- using b
- apply -
- apply(erule exE)
- apply(rule_tac x="pi \<bullet> pia" in exI)
- apply(simp add: alpha_gen.simps)
- apply(erule conjE)+
- apply(rule conjI)
- apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
- apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt)
- apply(rule conjI)
- apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
- apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt)
- apply(subst permute_eqvt[symmetric])
- apply(simp)
- done
-
-fun
- alpha_abs
-where
- "alpha_abs (bs, x) (cs, y) = (\<exists>p. (bs, x) \<approx>gen (op=) supp p (cs, y))"
-
-notation
- alpha_abs ("_ \<approx>abs _")
-
-lemma alpha_abs_swap:
- assumes a1: "a \<notin> (supp x) - bs"
- and a2: "b \<notin> (supp x) - bs"
- shows "(bs, x) \<approx>abs ((a \<rightleftharpoons> b) \<bullet> bs, (a \<rightleftharpoons> b) \<bullet> x)"
- apply(simp)
- apply(rule_tac x="(a \<rightleftharpoons> b)" in exI)
- apply(simp add: alpha_gen)
- apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
- apply(simp add: swap_set_not_in[OF a1 a2])
- apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
- using a1 a2
- apply(simp add: fresh_star_def fresh_def)
- apply(blast)
- apply(simp add: supp_swap)
- done
-
-fun
- supp_abs_fun
-where
- "supp_abs_fun (bs, x) = (supp x) - bs"
-
-lemma supp_abs_fun_lemma:
- assumes a: "x \<approx>abs y"
- shows "supp_abs_fun x = supp_abs_fun y"
- using a
- apply(induct rule: alpha_abs.induct)
- apply(simp add: alpha_gen)
- done
-
-quotient_type 'a abs = "(atom set \<times> 'a::pt)" / "alpha_abs"
- apply(rule equivpI)
- unfolding reflp_def symp_def transp_def
- apply(simp_all)
- (* refl *)
- apply(clarify)
- apply(rule exI)
- apply(rule alpha_gen_refl)
- apply(simp)
- (* symm *)
- apply(clarify)
- apply(rule exI)
- apply(rule alpha_gen_sym)
- apply(assumption)
- apply(clarsimp)
- (* trans *)
- apply(clarify)
- apply(rule exI)
- apply(rule alpha_gen_trans)
- apply(assumption)
- apply(assumption)
- apply(simp)
- done
-
-quotient_definition
- "Abs::atom set \<Rightarrow> ('a::pt) \<Rightarrow> 'a abs"
-is
- "Pair::atom set \<Rightarrow> ('a::pt) \<Rightarrow> (atom set \<times> 'a)"
-
-lemma [quot_respect]:
- shows "((op =) ===> (op =) ===> alpha_abs) Pair Pair"
- apply(clarsimp)
- apply(rule exI)
- apply(rule alpha_gen_refl)
- apply(simp)
- done
-
-lemma [quot_respect]:
- shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute"
- apply(clarsimp)
- apply(rule exI)
- apply(rule alpha_gen_eqvt)
- apply(assumption)
- apply(simp_all add: supp_eqvt)
- done
-
-lemma [quot_respect]:
- shows "(alpha_abs ===> (op =)) supp_abs_fun supp_abs_fun"
- apply(simp add: supp_abs_fun_lemma)
- done
-
-lemma abs_induct:
- "\<lbrakk>\<And>as (x::'a::pt). P (Abs as x)\<rbrakk> \<Longrightarrow> P t"
- apply(lifting prod.induct[where 'a="atom set" and 'b="'a"])
- done
-
-(* TEST case *)
-lemmas abs_induct2 = prod.induct[where 'a="atom set" and 'b="'a::pt", quot_lifted]
-thm abs_induct abs_induct2
-
-instantiation abs :: (pt) pt
-begin
-
-quotient_definition
- "permute_abs::perm \<Rightarrow> ('a::pt abs) \<Rightarrow> 'a abs"
-is
- "permute:: perm \<Rightarrow> (atom set \<times> 'a::pt) \<Rightarrow> (atom set \<times> 'a::pt)"
-
-lemma permute_ABS [simp]:
- fixes x::"'a::pt" (* ??? has to be 'a \<dots> 'b does not work *)
- shows "(p \<bullet> (Abs as x)) = Abs (p \<bullet> as) (p \<bullet> x)"
- by (lifting permute_prod.simps(1)[where 'a="atom set" and 'b="'a"])
-
-instance
- apply(default)
- apply(induct_tac [!] x rule: abs_induct)
- apply(simp_all)
- done
-
-end
-
-quotient_definition
- "supp_Abs_fun :: ('a::pt) abs \<Rightarrow> atom \<Rightarrow> bool"
-is
- "supp_abs_fun"
-
-lemma supp_Abs_fun_simp:
- shows "supp_Abs_fun (Abs bs x) = (supp x) - bs"
- by (lifting supp_abs_fun.simps(1))
-
-lemma supp_Abs_fun_eqvt [eqvt]:
- shows "(p \<bullet> supp_Abs_fun x) = supp_Abs_fun (p \<bullet> x)"
- apply(induct_tac x rule: abs_induct)
- apply(simp add: supp_Abs_fun_simp supp_eqvt Diff_eqvt)
- done
-
-lemma supp_Abs_fun_fresh:
- shows "a \<sharp> Abs bs x \<Longrightarrow> a \<sharp> supp_Abs_fun (Abs bs x)"
- apply(rule fresh_fun_eqvt_app)
- apply(simp add: eqvts_raw)
- apply(simp)
- done
-
-lemma Abs_swap:
- assumes a1: "a \<notin> (supp x) - bs"
- and a2: "b \<notin> (supp x) - bs"
- shows "(Abs bs x) = (Abs ((a \<rightleftharpoons> b) \<bullet> bs) ((a \<rightleftharpoons> b) \<bullet> x))"
- using a1 a2 by (lifting alpha_abs_swap)
-
-lemma Abs_supports:
- shows "((supp x) - as) supports (Abs as x)"
- unfolding supports_def
- apply(clarify)
- apply(simp (no_asm))
- apply(subst Abs_swap[symmetric])
- apply(simp_all)
- done
-
-lemma supp_Abs_subset1:
- fixes x::"'a::fs"
- shows "(supp x) - as \<subseteq> supp (Abs as x)"
- apply(simp add: supp_conv_fresh)
- apply(auto)
- apply(drule_tac supp_Abs_fun_fresh)
- apply(simp only: supp_Abs_fun_simp)
- apply(simp add: fresh_def)
- apply(simp add: supp_finite_atom_set finite_supp)
- done
-
-lemma supp_Abs_subset2:
- fixes x::"'a::fs"
- shows "supp (Abs as x) \<subseteq> (supp x) - as"
- apply(rule supp_is_subset)
- apply(rule Abs_supports)
- apply(simp add: finite_supp)
- done
-
-lemma supp_Abs:
- fixes x::"'a::fs"
- shows "supp (Abs as x) = (supp x) - as"
- apply(rule_tac subset_antisym)
- apply(rule supp_Abs_subset2)
- apply(rule supp_Abs_subset1)
- done
-
-instance abs :: (fs) fs
- apply(default)
- apply(induct_tac x rule: abs_induct)
- apply(simp add: supp_Abs)
- apply(simp add: finite_supp)
- done
-
-lemma Abs_fresh_iff:
- fixes x::"'a::fs"
- shows "a \<sharp> Abs bs x \<longleftrightarrow> a \<in> bs \<or> (a \<notin> bs \<and> a \<sharp> x)"
- apply(simp add: fresh_def)
- apply(simp add: supp_Abs)
- apply(auto)
- done
-
-lemma Abs_eq_iff:
- shows "Abs bs x = Abs cs y \<longleftrightarrow> (\<exists>p. (bs, x) \<approx>gen (op =) supp p (cs, y))"
- by (lifting alpha_abs.simps(1))
-
-
-
-(*
- below is a construction site for showing that in the
- single-binder case, the old and new alpha equivalence
- coincide
-*)
-
-fun
- alpha1
-where
- "alpha1 (a, x) (b, y) \<longleftrightarrow> (a = b \<and> x = y) \<or> (a \<noteq> b \<and> x = (a \<rightleftharpoons> b) \<bullet> y \<and> a \<sharp> y)"
-
-notation
- alpha1 ("_ \<approx>abs1 _")
-
-thm swap_set_not_in
-
-lemma qq:
- fixes S::"atom set"
- assumes a: "supp p \<inter> S = {}"
- shows "p \<bullet> S = S"
-using a
-apply(simp add: supp_perm permute_set_eq)
-apply(auto)
-apply(simp only: disjoint_iff_not_equal)
-apply(simp)
-apply (metis permute_atom_def_raw)
-apply(rule_tac x="(- p) \<bullet> x" in exI)
-apply(simp)
-apply(simp only: disjoint_iff_not_equal)
-apply(simp)
-apply(metis permute_minus_cancel)
-done
-
-lemma alpha_abs_swap:
- assumes a1: "(supp x - bs) \<sharp>* p"
- and a2: "(supp x - bs) \<sharp>* p"
- shows "(bs, x) \<approx>abs (p \<bullet> bs, p \<bullet> x)"
- apply(simp)
- apply(rule_tac x="p" in exI)
- apply(simp add: alpha_gen)
- apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric])
- apply(rule conjI)
- apply(rule sym)
- apply(rule qq)
- using a1 a2
- apply(auto)[1]
- oops
-
-
-
-lemma
- assumes a: "(a, x) \<approx>abs1 (b, y)" "sort_of a = sort_of b"
- shows "({a}, x) \<approx>abs ({b}, y)"
-using a
-apply(simp)
-apply(erule disjE)
-apply(simp)
-apply(rule exI)
-apply(rule alpha_gen_refl)
-apply(simp)
-apply(rule_tac x="(a \<rightleftharpoons> b)" in exI)
-apply(simp add: alpha_gen)
-apply(simp add: fresh_def)
-apply(rule conjI)
-apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in permute_eq_iff[THEN iffD1])
-apply(rule trans)
-apply(simp add: Diff_eqvt supp_eqvt)
-apply(subst swap_set_not_in)
-back
-apply(simp)
-apply(simp)
-apply(simp add: permute_set_eq)
-apply(rule_tac ?p1="(a \<rightleftharpoons> b)" in fresh_star_permute_iff[THEN iffD1])
-apply(simp add: permute_self)
-apply(simp add: Diff_eqvt supp_eqvt)
-apply(simp add: permute_set_eq)
-apply(subgoal_tac "supp (a \<rightleftharpoons> b) \<subseteq> {a, b}")
-apply(simp add: fresh_star_def fresh_def)
-apply(blast)
-apply(simp add: supp_swap)
-done
-
-thm supp_perm
-
-lemma perm_induct_test:
- fixes P :: "perm => bool"
- assumes zero: "P 0"
- assumes swap: "\<And>a b. \<lbrakk>sort_of a = sort_of b; a \<noteq> b\<rbrakk> \<Longrightarrow> P (a \<rightleftharpoons> b)"
- assumes plus: "\<And>p1 p2. \<lbrakk>supp (p1 + p2) = (supp p1 \<union> supp p2); P p1; P p2\<rbrakk> \<Longrightarrow> P (p1 + p2)"
- shows "P p"
-sorry
-
-lemma tt1:
- assumes a: "finite (supp p)"
- shows "(supp x) \<sharp>* p \<Longrightarrow> p \<bullet> x = x"
-using a
-unfolding fresh_star_def fresh_def
-apply(induct F\<equiv>"supp p" arbitrary: p rule: finite.induct)
-apply(simp add: supp_perm)
-defer
-apply(case_tac "a \<in> A")
-apply(simp add: insert_absorb)
-apply(subgoal_tac "A = supp p - {a}")
-prefer 2
-apply(blast)
-apply(case_tac "p \<bullet> a = a")
-apply(simp add: supp_perm)
-apply(drule_tac x="p + (((- p) \<bullet> a) \<rightleftharpoons> a)" in meta_spec)
-apply(simp)
-apply(drule meta_mp)
-apply(rule subset_antisym)
-apply(rule subsetI)
-apply(simp)
-apply(simp add: supp_perm)
-apply(case_tac "xa = p \<bullet> a")
-apply(simp)
-apply(case_tac "p \<bullet> a = (- p) \<bullet> a")
-apply(simp)
-defer
-apply(simp)
-oops
-
-lemma tt:
- "(supp x) \<sharp>* p \<Longrightarrow> p \<bullet> x = x"
-apply(induct p rule: perm_induct_test)
-apply(simp)
-apply(rule swap_fresh_fresh)
-apply(case_tac "a \<in> supp x")
-apply(simp add: fresh_star_def)
-apply(drule_tac x="a" in bspec)
-apply(simp)
-apply(simp add: fresh_def)
-apply(simp add: supp_swap)
-apply(simp add: fresh_def)
-apply(case_tac "b \<in> supp x")
-apply(simp add: fresh_star_def)
-apply(drule_tac x="b" in bspec)
-apply(simp)
-apply(simp add: fresh_def)
-apply(simp add: supp_swap)
-apply(simp add: fresh_def)
-apply(simp)
-apply(drule meta_mp)
-apply(simp add: fresh_star_def fresh_def)
-apply(drule meta_mp)
-apply(simp add: fresh_star_def fresh_def)
-apply(simp)
-done
-
-lemma yy:
- assumes "S1 - {x} = S2 - {x}" "x \<in> S1" "x \<in> S2"
- shows "S1 = S2"
-using assms
-apply (metis insert_Diff_single insert_absorb)
-done
-
-
-lemma
- assumes a: "({a}, x) \<approx>abs ({b}, y)" "sort_of a = sort_of b"
- shows "(a, x) \<approx>abs1 (b, y)"
-using a
-apply(case_tac "a = b")
-apply(simp)
-oops
-
-
-end
-