diff -r 4b0563bc4b03 -r 7d8949da7d99 Quot/Nominal/Abs.thy --- a/Quot/Nominal/Abs.thy Wed Feb 24 17:32:43 2010 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,506 +0,0 @@ -theory Abs -imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "../Quotient" "../Quotient_Product" -begin - -(* the next three lemmas that should be in Nominal \\must be cleaned *) -lemma ball_image: - shows "(\x \ p \ S. P x) = (\x \ S. P (p \ x))" -apply(auto) -apply(drule_tac x="p \ x" in bspec) -apply(simp add: mem_permute_iff) -apply(simp) -apply(drule_tac x="(- p) \ x" in bspec) -apply(rule_tac p1="p" in mem_permute_iff[THEN iffD1]) -apply(simp) -apply(simp) -done - -lemma fresh_star_plus: - fixes p q::perm - shows "\a \* p; a \* q\ \ a \* (p + q)" - unfolding fresh_star_def - by (simp add: fresh_plus_perm) - -lemma fresh_star_permute_iff: - shows "(p \ a) \* (p \ x) \ a \* x" -apply(simp add: fresh_star_def) -apply(simp add: ball_image) -apply(simp add: fresh_permute_iff) -done - -fun - alpha_gen -where - alpha_gen[simp del]: - "alpha_gen (bs, x) R f pi (cs, y) \ f x - bs = f y - cs \ (f x - bs) \* pi \ R (pi \ x) y" - -notation - alpha_gen ("_ \gen _ _ _ _" [100, 100, 100, 100, 100] 100) - -lemma [mono]: "R1 \ R2 \ alpha_gen x R1 \ alpha_gen x R2" - by (cases x) (auto simp add: le_fun_def le_bool_def alpha_gen.simps) - -lemma alpha_gen_refl: - assumes a: "R x x" - shows "(bs, x) \gen R f 0 (bs, x)" - using a by (simp add: alpha_gen fresh_star_def fresh_zero_perm) - -lemma alpha_gen_sym: - assumes a: "(bs, x) \gen R f p (cs, y)" - and b: "R (p \ x) y \ R (- p \ y) x" - shows "(cs, y) \gen R f (- p) (bs, x)" - using a b by (simp add: alpha_gen fresh_star_def fresh_def supp_minus_perm) - -lemma alpha_gen_trans: - assumes a: "(bs, x) \gen R f p1 (cs, y)" - and b: "(cs, y) \gen R f p2 (ds, z)" - and c: "\R (p1 \ x) y; R (p2 \ y) z\ \ R ((p2 + p1) \ x) z" - shows "(bs, x) \gen R f (p2 + p1) (ds, z)" - using a b c using supp_plus_perm - apply(simp add: alpha_gen fresh_star_def fresh_def) - apply(blast) - done - -lemma alpha_gen_eqvt: - assumes a: "(bs, x) \gen R f q (cs, y)" - and b: "R (q \ x) y \ R (p \ (q \ x)) (p \ y)" - and c: "p \ (f x) = f (p \ x)" - and d: "p \ (f y) = f (p \ y)" - shows "(p \ bs, p \ x) \gen R f (p \ q) (p \ cs, p \ y)" - using a b - apply(simp add: alpha_gen c[symmetric] d[symmetric] Diff_eqvt[symmetric]) - apply(simp add: permute_eqvt[symmetric]) - apply(simp add: fresh_star_permute_iff) - apply(clarsimp) - done - -lemma alpha_gen_compose_sym: - assumes b: "\pi. (aa, t) \gen (\x1 x2. R x1 x2 \ R x2 x1) f pi (ab, s)" - and a: "\pi t s. (R t s \ R (pi \ t) (pi \ s))" - shows "\pi. (ab, s) \gen R f pi (aa, t)" - using b apply - - apply(erule exE) - apply(rule_tac x="- pi" in exI) - apply(simp add: alpha_gen.simps) - apply(erule conjE)+ - apply(rule conjI) - apply(simp add: fresh_star_def fresh_minus_perm) - apply(subgoal_tac "R (- pi \ s) ((- pi) \ (pi \ t))") - apply simp - apply(rule a) - apply assumption - done - -lemma alpha_gen_compose_trans: - assumes b: "\pi\perm. (aa, t) \gen (\x1 x2. R x1 x2 \ (\x. R x2 x \ R x1 x)) f pi (ab, ta)" - and c: "\pi\perm. (ab, ta) \gen R f pi (ac, sa)" - and a: "\pi t s. (R t s \ R (pi \ t) (pi \ s))" - shows "\pi\perm. (aa, t) \gen R f pi (ac, sa)" - using b c apply - - apply(simp add: alpha_gen.simps) - apply(erule conjE)+ - apply(erule exE)+ - apply(erule conjE)+ - apply(rule_tac x="pia + pi" in exI) - apply(simp add: fresh_star_plus) - apply(drule_tac x="- pia \ sa" in spec) - apply(drule mp) - apply(rotate_tac 4) - apply(drule_tac pi="- pia" in a) - apply(simp) - apply(rotate_tac 6) - apply(drule_tac pi="pia" in a) - apply(simp) - done - -lemma alpha_gen_atom_eqvt: - assumes a: "\x. pi \ (f x) = f (pi \ x)" - and b: "\pia. ({atom a}, t) \gen (\x1 x2. R x1 x2 \ R (pi \ x1) (pi \ x2)) f pia ({atom b}, s)" - shows "\pia. ({atom (pi \ a)}, pi \ t) \gen R f pia ({atom (pi \ b)}, pi \ s)" - using b - apply - - apply(erule exE) - apply(rule_tac x="pi \ pia" in exI) - apply(simp add: alpha_gen.simps) - apply(erule conjE)+ - apply(rule conjI) - apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1]) - apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt) - apply(rule conjI) - apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1]) - apply(simp add: a[symmetric] atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt) - apply(subst permute_eqvt[symmetric]) - apply(simp) - done - -fun - alpha_abs -where - "alpha_abs (bs, x) (cs, y) = (\p. (bs, x) \gen (op=) supp p (cs, y))" - -notation - alpha_abs ("_ \abs _") - -lemma alpha_abs_swap: - assumes a1: "a \ (supp x) - bs" - and a2: "b \ (supp x) - bs" - shows "(bs, x) \abs ((a \ b) \ bs, (a \ b) \ x)" - apply(simp) - apply(rule_tac x="(a \ b)" in exI) - apply(simp add: alpha_gen) - apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric]) - apply(simp add: swap_set_not_in[OF a1 a2]) - apply(subgoal_tac "supp (a \ b) \ {a, b}") - using a1 a2 - apply(simp add: fresh_star_def fresh_def) - apply(blast) - apply(simp add: supp_swap) - done - -fun - supp_abs_fun -where - "supp_abs_fun (bs, x) = (supp x) - bs" - -lemma supp_abs_fun_lemma: - assumes a: "x \abs y" - shows "supp_abs_fun x = supp_abs_fun y" - using a - apply(induct rule: alpha_abs.induct) - apply(simp add: alpha_gen) - done - -quotient_type 'a abs = "(atom set \ 'a::pt)" / "alpha_abs" - apply(rule equivpI) - unfolding reflp_def symp_def transp_def - apply(simp_all) - (* refl *) - apply(clarify) - apply(rule exI) - apply(rule alpha_gen_refl) - apply(simp) - (* symm *) - apply(clarify) - apply(rule exI) - apply(rule alpha_gen_sym) - apply(assumption) - apply(clarsimp) - (* trans *) - apply(clarify) - apply(rule exI) - apply(rule alpha_gen_trans) - apply(assumption) - apply(assumption) - apply(simp) - done - -quotient_definition - "Abs::atom set \ ('a::pt) \ 'a abs" -is - "Pair::atom set \ ('a::pt) \ (atom set \ 'a)" - -lemma [quot_respect]: - shows "((op =) ===> (op =) ===> alpha_abs) Pair Pair" - apply(clarsimp) - apply(rule exI) - apply(rule alpha_gen_refl) - apply(simp) - done - -lemma [quot_respect]: - shows "((op =) ===> alpha_abs ===> alpha_abs) permute permute" - apply(clarsimp) - apply(rule exI) - apply(rule alpha_gen_eqvt) - apply(assumption) - apply(simp_all add: supp_eqvt) - done - -lemma [quot_respect]: - shows "(alpha_abs ===> (op =)) supp_abs_fun supp_abs_fun" - apply(simp add: supp_abs_fun_lemma) - done - -lemma abs_induct: - "\\as (x::'a::pt). P (Abs as x)\ \ P t" - apply(lifting prod.induct[where 'a="atom set" and 'b="'a"]) - done - -(* TEST case *) -lemmas abs_induct2 = prod.induct[where 'a="atom set" and 'b="'a::pt", quot_lifted] -thm abs_induct abs_induct2 - -instantiation abs :: (pt) pt -begin - -quotient_definition - "permute_abs::perm \ ('a::pt abs) \ 'a abs" -is - "permute:: perm \ (atom set \ 'a::pt) \ (atom set \ 'a::pt)" - -lemma permute_ABS [simp]: - fixes x::"'a::pt" (* ??? has to be 'a \ 'b does not work *) - shows "(p \ (Abs as x)) = Abs (p \ as) (p \ x)" - by (lifting permute_prod.simps(1)[where 'a="atom set" and 'b="'a"]) - -instance - apply(default) - apply(induct_tac [!] x rule: abs_induct) - apply(simp_all) - done - -end - -quotient_definition - "supp_Abs_fun :: ('a::pt) abs \ atom \ bool" -is - "supp_abs_fun" - -lemma supp_Abs_fun_simp: - shows "supp_Abs_fun (Abs bs x) = (supp x) - bs" - by (lifting supp_abs_fun.simps(1)) - -lemma supp_Abs_fun_eqvt [eqvt]: - shows "(p \ supp_Abs_fun x) = supp_Abs_fun (p \ x)" - apply(induct_tac x rule: abs_induct) - apply(simp add: supp_Abs_fun_simp supp_eqvt Diff_eqvt) - done - -lemma supp_Abs_fun_fresh: - shows "a \ Abs bs x \ a \ supp_Abs_fun (Abs bs x)" - apply(rule fresh_fun_eqvt_app) - apply(simp add: eqvts_raw) - apply(simp) - done - -lemma Abs_swap: - assumes a1: "a \ (supp x) - bs" - and a2: "b \ (supp x) - bs" - shows "(Abs bs x) = (Abs ((a \ b) \ bs) ((a \ b) \ x))" - using a1 a2 by (lifting alpha_abs_swap) - -lemma Abs_supports: - shows "((supp x) - as) supports (Abs as x)" - unfolding supports_def - apply(clarify) - apply(simp (no_asm)) - apply(subst Abs_swap[symmetric]) - apply(simp_all) - done - -lemma supp_Abs_subset1: - fixes x::"'a::fs" - shows "(supp x) - as \ supp (Abs as x)" - apply(simp add: supp_conv_fresh) - apply(auto) - apply(drule_tac supp_Abs_fun_fresh) - apply(simp only: supp_Abs_fun_simp) - apply(simp add: fresh_def) - apply(simp add: supp_finite_atom_set finite_supp) - done - -lemma supp_Abs_subset2: - fixes x::"'a::fs" - shows "supp (Abs as x) \ (supp x) - as" - apply(rule supp_is_subset) - apply(rule Abs_supports) - apply(simp add: finite_supp) - done - -lemma supp_Abs: - fixes x::"'a::fs" - shows "supp (Abs as x) = (supp x) - as" - apply(rule_tac subset_antisym) - apply(rule supp_Abs_subset2) - apply(rule supp_Abs_subset1) - done - -instance abs :: (fs) fs - apply(default) - apply(induct_tac x rule: abs_induct) - apply(simp add: supp_Abs) - apply(simp add: finite_supp) - done - -lemma Abs_fresh_iff: - fixes x::"'a::fs" - shows "a \ Abs bs x \ a \ bs \ (a \ bs \ a \ x)" - apply(simp add: fresh_def) - apply(simp add: supp_Abs) - apply(auto) - done - -lemma Abs_eq_iff: - shows "Abs bs x = Abs cs y \ (\p. (bs, x) \gen (op =) supp p (cs, y))" - by (lifting alpha_abs.simps(1)) - - - -(* - below is a construction site for showing that in the - single-binder case, the old and new alpha equivalence - coincide -*) - -fun - alpha1 -where - "alpha1 (a, x) (b, y) \ (a = b \ x = y) \ (a \ b \ x = (a \ b) \ y \ a \ y)" - -notation - alpha1 ("_ \abs1 _") - -thm swap_set_not_in - -lemma qq: - fixes S::"atom set" - assumes a: "supp p \ S = {}" - shows "p \ S = S" -using a -apply(simp add: supp_perm permute_set_eq) -apply(auto) -apply(simp only: disjoint_iff_not_equal) -apply(simp) -apply (metis permute_atom_def_raw) -apply(rule_tac x="(- p) \ x" in exI) -apply(simp) -apply(simp only: disjoint_iff_not_equal) -apply(simp) -apply(metis permute_minus_cancel) -done - -lemma alpha_abs_swap: - assumes a1: "(supp x - bs) \* p" - and a2: "(supp x - bs) \* p" - shows "(bs, x) \abs (p \ bs, p \ x)" - apply(simp) - apply(rule_tac x="p" in exI) - apply(simp add: alpha_gen) - apply(simp add: supp_eqvt[symmetric] Diff_eqvt[symmetric]) - apply(rule conjI) - apply(rule sym) - apply(rule qq) - using a1 a2 - apply(auto)[1] - oops - - - -lemma - assumes a: "(a, x) \abs1 (b, y)" "sort_of a = sort_of b" - shows "({a}, x) \abs ({b}, y)" -using a -apply(simp) -apply(erule disjE) -apply(simp) -apply(rule exI) -apply(rule alpha_gen_refl) -apply(simp) -apply(rule_tac x="(a \ b)" in exI) -apply(simp add: alpha_gen) -apply(simp add: fresh_def) -apply(rule conjI) -apply(rule_tac ?p1="(a \ b)" in permute_eq_iff[THEN iffD1]) -apply(rule trans) -apply(simp add: Diff_eqvt supp_eqvt) -apply(subst swap_set_not_in) -back -apply(simp) -apply(simp) -apply(simp add: permute_set_eq) -apply(rule_tac ?p1="(a \ b)" in fresh_star_permute_iff[THEN iffD1]) -apply(simp add: permute_self) -apply(simp add: Diff_eqvt supp_eqvt) -apply(simp add: permute_set_eq) -apply(subgoal_tac "supp (a \ b) \ {a, b}") -apply(simp add: fresh_star_def fresh_def) -apply(blast) -apply(simp add: supp_swap) -done - -thm supp_perm - -lemma perm_induct_test: - fixes P :: "perm => bool" - assumes zero: "P 0" - assumes swap: "\a b. \sort_of a = sort_of b; a \ b\ \ P (a \ b)" - assumes plus: "\p1 p2. \supp (p1 + p2) = (supp p1 \ supp p2); P p1; P p2\ \ P (p1 + p2)" - shows "P p" -sorry - -lemma tt1: - assumes a: "finite (supp p)" - shows "(supp x) \* p \ p \ x = x" -using a -unfolding fresh_star_def fresh_def -apply(induct F\"supp p" arbitrary: p rule: finite.induct) -apply(simp add: supp_perm) -defer -apply(case_tac "a \ A") -apply(simp add: insert_absorb) -apply(subgoal_tac "A = supp p - {a}") -prefer 2 -apply(blast) -apply(case_tac "p \ a = a") -apply(simp add: supp_perm) -apply(drule_tac x="p + (((- p) \ a) \ a)" in meta_spec) -apply(simp) -apply(drule meta_mp) -apply(rule subset_antisym) -apply(rule subsetI) -apply(simp) -apply(simp add: supp_perm) -apply(case_tac "xa = p \ a") -apply(simp) -apply(case_tac "p \ a = (- p) \ a") -apply(simp) -defer -apply(simp) -oops - -lemma tt: - "(supp x) \* p \ p \ x = x" -apply(induct p rule: perm_induct_test) -apply(simp) -apply(rule swap_fresh_fresh) -apply(case_tac "a \ supp x") -apply(simp add: fresh_star_def) -apply(drule_tac x="a" in bspec) -apply(simp) -apply(simp add: fresh_def) -apply(simp add: supp_swap) -apply(simp add: fresh_def) -apply(case_tac "b \ supp x") -apply(simp add: fresh_star_def) -apply(drule_tac x="b" in bspec) -apply(simp) -apply(simp add: fresh_def) -apply(simp add: supp_swap) -apply(simp add: fresh_def) -apply(simp) -apply(drule meta_mp) -apply(simp add: fresh_star_def fresh_def) -apply(drule meta_mp) -apply(simp add: fresh_star_def fresh_def) -apply(simp) -done - -lemma yy: - assumes "S1 - {x} = S2 - {x}" "x \ S1" "x \ S2" - shows "S1 = S2" -using assms -apply (metis insert_Diff_single insert_absorb) -done - - -lemma - assumes a: "({a}, x) \abs ({b}, y)" "sort_of a = sort_of b" - shows "(a, x) \abs1 (b, y)" -using a -apply(case_tac "a = b") -apply(simp) -oops - - -end -