--- a/Nominal/Nominal2_Abs.thy Tue Jul 08 11:18:31 2014 +0100
+++ b/Nominal/Nominal2_Abs.thy Thu Jul 09 02:32:46 2015 +0100
@@ -923,15 +923,15 @@
ML {*
fun alpha_single_simproc thm _ ctxt ctrm =
- let
+ let
val thy = Proof_Context.theory_of ctxt
- val _ $ (_ $ x) $ (_ $ y) = term_of ctrm
+ val _ $ (_ $ x) $ (_ $ y) = Thm.term_of ctrm
val cvrs = union (op =) (Term.add_frees x []) (Term.add_frees y [])
|> filter (fn (_, ty) => Sign.of_sort thy (ty, @{sort fs}))
|> map Free
|> HOLogic.mk_tuple
- |> Thm.cterm_of thy
- val cvrs_ty = ctyp_of_term cvrs
+ |> Thm.cterm_of ctxt
+ val cvrs_ty = Thm.ctyp_of_cterm cvrs
val thm' = thm
|> Drule.instantiate' [NONE, NONE, SOME cvrs_ty] [NONE, NONE, NONE, NONE, SOME cvrs]
in
@@ -1050,7 +1050,6 @@
lemma [quot_respect]:
shows "((R1 ===> op =) ===> (R2 ===> op =) ===> rel_prod R1 R2 ===> op =) prod_fv prod_fv"
unfolding rel_fun_def
- unfolding rel_prod_def
by auto
lemma [quot_preserve]:
@@ -1067,7 +1066,7 @@
lemma [eqvt]:
shows "p \<bullet> prod_alpha A B x y = prod_alpha (p \<bullet> A) (p \<bullet> B) (p \<bullet> x) (p \<bullet> y)"
unfolding prod_alpha_def
- unfolding rel_prod_def
+ unfolding rel_prod_conv
by (perm_simp) (rule refl)
lemma [eqvt]: