diff -r b2e1a7b83e05 -r 67370521c09c Nominal/Nominal2_Abs.thy --- a/Nominal/Nominal2_Abs.thy Tue Jul 08 11:18:31 2014 +0100 +++ b/Nominal/Nominal2_Abs.thy Thu Jul 09 02:32:46 2015 +0100 @@ -923,15 +923,15 @@ ML {* fun alpha_single_simproc thm _ ctxt ctrm = - let + let val thy = Proof_Context.theory_of ctxt - val _ $ (_ $ x) $ (_ $ y) = term_of ctrm + val _ $ (_ $ x) $ (_ $ y) = Thm.term_of ctrm val cvrs = union (op =) (Term.add_frees x []) (Term.add_frees y []) |> filter (fn (_, ty) => Sign.of_sort thy (ty, @{sort fs})) |> map Free |> HOLogic.mk_tuple - |> Thm.cterm_of thy - val cvrs_ty = ctyp_of_term cvrs + |> Thm.cterm_of ctxt + val cvrs_ty = Thm.ctyp_of_cterm cvrs val thm' = thm |> Drule.instantiate' [NONE, NONE, SOME cvrs_ty] [NONE, NONE, NONE, NONE, SOME cvrs] in @@ -1050,7 +1050,6 @@ lemma [quot_respect]: shows "((R1 ===> op =) ===> (R2 ===> op =) ===> rel_prod R1 R2 ===> op =) prod_fv prod_fv" unfolding rel_fun_def - unfolding rel_prod_def by auto lemma [quot_preserve]: @@ -1067,7 +1066,7 @@ lemma [eqvt]: shows "p \ prod_alpha A B x y = prod_alpha (p \ A) (p \ B) (p \ x) (p \ y)" unfolding prod_alpha_def - unfolding rel_prod_def + unfolding rel_prod_conv by (perm_simp) (rule refl) lemma [eqvt]: