--- a/QuotList.thy Fri Dec 04 15:41:09 2009 +0100
+++ b/QuotList.thy Fri Dec 04 15:50:57 2009 +0100
@@ -7,15 +7,15 @@
by simp
fun
- LIST_REL
+ list_rel
where
- "LIST_REL R [] [] = True"
-| "LIST_REL R (x#xs) [] = False"
-| "LIST_REL R [] (x#xs) = False"
-| "LIST_REL R (x#xs) (y#ys) = (R x y \<and> LIST_REL R xs ys)"
+ "list_rel R [] [] = True"
+| "list_rel R (x#xs) [] = False"
+| "list_rel R [] (x#xs) = False"
+| "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"
-lemma LIST_REL_EQ:
- shows "LIST_REL (op =) \<equiv> (op =)"
+lemma list_rel_EQ:
+ shows "list_rel (op =) \<equiv> (op =)"
apply(rule eq_reflection)
unfolding expand_fun_eq
apply(rule allI)+
@@ -23,22 +23,22 @@
apply(simp_all)
done
-lemma LIST_REL_REFL:
+lemma list_rel_REFL:
assumes a: "\<And>x y. R x y = (R x = R y)"
- shows "LIST_REL R x x"
+ shows "list_rel R x x"
by (induct x) (auto simp add: a)
lemma LIST_equivp:
assumes a: "equivp R"
- shows "equivp (LIST_REL R)"
+ shows "equivp (list_rel R)"
unfolding equivp_def
apply(rule allI)+
apply(induct_tac x y rule: list_induct2')
apply(simp)
apply(simp add: expand_fun_eq)
-apply(metis LIST_REL.simps(1) LIST_REL.simps(2))
+apply(metis list_rel.simps(1) list_rel.simps(2))
apply(simp add: expand_fun_eq)
-apply(metis LIST_REL.simps(1) LIST_REL.simps(2))
+apply(metis list_rel.simps(1) list_rel.simps(2))
apply(simp add: expand_fun_eq)
apply(rule iffI)
apply(rule allI)
@@ -48,21 +48,21 @@
using a
apply(unfold equivp_def)
apply(auto)[1]
-apply(metis LIST_REL.simps(4))
+apply(metis list_rel.simps(4))
done
-lemma LIST_REL_REL:
+lemma list_rel_REL:
assumes q: "Quotient R Abs Rep"
- shows "LIST_REL R r s = (LIST_REL R r r \<and> LIST_REL R s s \<and> (map Abs r = map Abs s))"
+ shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))"
apply(induct r s rule: list_induct2')
apply(simp_all)
using Quotient_REL[OF q]
apply(metis)
done
-lemma LIST_Quotient:
+lemma list_quotient:
assumes q: "Quotient R Abs Rep"
- shows "Quotient (LIST_REL R) (map Abs) (map Rep)"
+ shows "Quotient (list_rel R) (map Abs) (map Rep)"
unfolding Quotient_def
apply(rule conjI)
apply(rule allI)
@@ -76,7 +76,7 @@
apply(simp)
apply(simp add: Quotient_REP_reflp[OF q])
apply(rule allI)+
-apply(rule LIST_REL_REL[OF q])
+apply(rule list_rel_REL[OF q])
done
lemma CONS_PRS:
@@ -86,8 +86,8 @@
lemma CONS_RSP:
assumes q: "Quotient R Abs Rep"
- and a: "R h1 h2" "LIST_REL R t1 t2"
- shows "LIST_REL R (h1#t1) (h2#t2)"
+ and a: "R h1 h2" "list_rel R t1 t2"
+ shows "list_rel R (h1#t1) (h2#t2)"
using a by (auto)
lemma NIL_PRS:
@@ -97,7 +97,7 @@
lemma NIL_RSP:
assumes q: "Quotient R Abs Rep"
- shows "LIST_REL R [] []"
+ shows "list_rel R [] []"
by simp
lemma MAP_PRS:
@@ -110,9 +110,9 @@
lemma MAP_RSP:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
- and a: "(R1 ===> R2) f1 f2"
- and b: "LIST_REL R1 l1 l2"
- shows "LIST_REL R2 (map f1 l1) (map f2 l2)"
+ and a: "(R1 ===> R2) f1 f2"
+ and b: "list_rel R1 l1 l2"
+ shows "list_rel R2 (map f1 l1) (map f2 l2)"
using b a
by (induct l1 l2 rule: list_induct2')
(simp_all)