5 lemma LIST_map_id:  | 
     5 lemma LIST_map_id:  | 
     6   shows "map (\<lambda>x. x) = (\<lambda>x. x)"  | 
     6   shows "map (\<lambda>x. x) = (\<lambda>x. x)"  | 
     7   by simp  | 
     7   by simp  | 
     8   | 
     8   | 
     9 fun  | 
     9 fun  | 
    10   LIST_REL  | 
    10   list_rel  | 
    11 where  | 
    11 where  | 
    12   "LIST_REL R [] [] = True"  | 
    12   "list_rel R [] [] = True"  | 
    13 | "LIST_REL R (x#xs) [] = False"  | 
    13 | "list_rel R (x#xs) [] = False"  | 
    14 | "LIST_REL R [] (x#xs) = False"  | 
    14 | "list_rel R [] (x#xs) = False"  | 
    15 | "LIST_REL R (x#xs) (y#ys) = (R x y \<and> LIST_REL R xs ys)"  | 
    15 | "list_rel R (x#xs) (y#ys) = (R x y \<and> list_rel R xs ys)"  | 
    16   | 
    16   | 
    17 lemma LIST_REL_EQ:  | 
    17 lemma list_rel_EQ:  | 
    18   shows "LIST_REL (op =) \<equiv> (op =)"  | 
    18   shows "list_rel (op =) \<equiv> (op =)"  | 
    19 apply(rule eq_reflection)  | 
    19 apply(rule eq_reflection)  | 
    20 unfolding expand_fun_eq  | 
    20 unfolding expand_fun_eq  | 
    21 apply(rule allI)+  | 
    21 apply(rule allI)+  | 
    22 apply(induct_tac x xa rule: list_induct2')  | 
    22 apply(induct_tac x xa rule: list_induct2')  | 
    23 apply(simp_all)  | 
    23 apply(simp_all)  | 
    24 done  | 
    24 done  | 
    25   | 
    25   | 
    26 lemma LIST_REL_REFL:  | 
    26 lemma list_rel_REFL:  | 
    27   assumes a: "\<And>x y. R x y = (R x = R y)"  | 
    27   assumes a: "\<And>x y. R x y = (R x = R y)"  | 
    28   shows "LIST_REL R x x"  | 
    28   shows "list_rel R x x"  | 
    29 by (induct x) (auto simp add: a)  | 
    29 by (induct x) (auto simp add: a)  | 
    30   | 
    30   | 
    31 lemma LIST_equivp:  | 
    31 lemma LIST_equivp:  | 
    32   assumes a: "equivp R"  | 
    32   assumes a: "equivp R"  | 
    33   shows "equivp (LIST_REL R)"  | 
    33   shows "equivp (list_rel R)"  | 
    34 unfolding equivp_def  | 
    34 unfolding equivp_def  | 
    35 apply(rule allI)+  | 
    35 apply(rule allI)+  | 
    36 apply(induct_tac x y rule: list_induct2')  | 
    36 apply(induct_tac x y rule: list_induct2')  | 
    37 apply(simp)  | 
    37 apply(simp)  | 
    38 apply(simp add: expand_fun_eq)  | 
    38 apply(simp add: expand_fun_eq)  | 
    39 apply(metis LIST_REL.simps(1) LIST_REL.simps(2))  | 
    39 apply(metis list_rel.simps(1) list_rel.simps(2))  | 
    40 apply(simp add: expand_fun_eq)  | 
    40 apply(simp add: expand_fun_eq)  | 
    41 apply(metis LIST_REL.simps(1) LIST_REL.simps(2))  | 
    41 apply(metis list_rel.simps(1) list_rel.simps(2))  | 
    42 apply(simp add: expand_fun_eq)  | 
    42 apply(simp add: expand_fun_eq)  | 
    43 apply(rule iffI)  | 
    43 apply(rule iffI)  | 
    44 apply(rule allI)  | 
    44 apply(rule allI)  | 
    45 apply(case_tac x)  | 
    45 apply(case_tac x)  | 
    46 apply(simp)  | 
    46 apply(simp)  | 
    47 apply(simp)  | 
    47 apply(simp)  | 
    48 using a  | 
    48 using a  | 
    49 apply(unfold equivp_def)  | 
    49 apply(unfold equivp_def)  | 
    50 apply(auto)[1]  | 
    50 apply(auto)[1]  | 
    51 apply(metis LIST_REL.simps(4))  | 
    51 apply(metis list_rel.simps(4))  | 
    52 done  | 
    52 done  | 
    53   | 
    53   | 
    54 lemma LIST_REL_REL:   | 
    54 lemma list_rel_REL:   | 
    55   assumes q: "Quotient R Abs Rep"  | 
    55   assumes q: "Quotient R Abs Rep"  | 
    56   shows "LIST_REL R r s = (LIST_REL R r r \<and> LIST_REL R s s \<and> (map Abs r = map Abs s))"  | 
    56   shows "list_rel R r s = (list_rel R r r \<and> list_rel R s s \<and> (map Abs r = map Abs s))"  | 
    57 apply(induct r s rule: list_induct2')  | 
    57 apply(induct r s rule: list_induct2')  | 
    58 apply(simp_all)  | 
    58 apply(simp_all)  | 
    59 using Quotient_REL[OF q]  | 
    59 using Quotient_REL[OF q]  | 
    60 apply(metis)  | 
    60 apply(metis)  | 
    61 done  | 
    61 done  | 
    62   | 
    62   | 
    63 lemma LIST_Quotient:  | 
    63 lemma list_quotient:  | 
    64   assumes q: "Quotient R Abs Rep"  | 
    64   assumes q: "Quotient R Abs Rep"  | 
    65   shows "Quotient (LIST_REL R) (map Abs) (map Rep)"  | 
    65   shows "Quotient (list_rel R) (map Abs) (map Rep)"  | 
    66 unfolding Quotient_def  | 
    66 unfolding Quotient_def  | 
    67 apply(rule conjI)  | 
    67 apply(rule conjI)  | 
    68 apply(rule allI)  | 
    68 apply(rule allI)  | 
    69 apply(induct_tac a)  | 
    69 apply(induct_tac a)  | 
    70 apply(simp)  | 
    70 apply(simp)  | 
    74 apply(induct_tac a)  | 
    74 apply(induct_tac a)  | 
    75 apply(simp)  | 
    75 apply(simp)  | 
    76 apply(simp)  | 
    76 apply(simp)  | 
    77 apply(simp add: Quotient_REP_reflp[OF q])  | 
    77 apply(simp add: Quotient_REP_reflp[OF q])  | 
    78 apply(rule allI)+  | 
    78 apply(rule allI)+  | 
    79 apply(rule LIST_REL_REL[OF q])  | 
    79 apply(rule list_rel_REL[OF q])  | 
    80 done  | 
    80 done  | 
    81   | 
    81   | 
    82 lemma CONS_PRS:  | 
    82 lemma CONS_PRS:  | 
    83   assumes q: "Quotient R Abs Rep"  | 
    83   assumes q: "Quotient R Abs Rep"  | 
    84   shows "(h#t) = (map Abs) ((Rep h)#(map Rep t))"  | 
    84   shows "(h#t) = (map Abs) ((Rep h)#(map Rep t))"  | 
    85 by (induct t) (simp_all add: Quotient_ABS_REP[OF q])  | 
    85 by (induct t) (simp_all add: Quotient_ABS_REP[OF q])  | 
    86   | 
    86   | 
    87 lemma CONS_RSP:  | 
    87 lemma CONS_RSP:  | 
    88   assumes q: "Quotient R Abs Rep"  | 
    88   assumes q: "Quotient R Abs Rep"  | 
    89   and     a: "R h1 h2" "LIST_REL R t1 t2"  | 
    89   and     a: "R h1 h2" "list_rel R t1 t2"  | 
    90   shows "LIST_REL R (h1#t1) (h2#t2)"  | 
    90   shows "list_rel R (h1#t1) (h2#t2)"  | 
    91 using a by (auto)  | 
    91 using a by (auto)  | 
    92   | 
    92   | 
    93 lemma NIL_PRS:  | 
    93 lemma NIL_PRS:  | 
    94   assumes q: "Quotient R Abs Rep"  | 
    94   assumes q: "Quotient R Abs Rep"  | 
    95   shows "[] = (map Abs [])"  | 
    95   shows "[] = (map Abs [])"  | 
    96 by (simp)  | 
    96 by (simp)  | 
    97   | 
    97   | 
    98 lemma NIL_RSP:  | 
    98 lemma NIL_RSP:  | 
    99   assumes q: "Quotient R Abs Rep"  | 
    99   assumes q: "Quotient R Abs Rep"  | 
   100   shows "LIST_REL R [] []"  | 
   100   shows "list_rel R [] []"  | 
   101 by simp  | 
   101 by simp  | 
   102   | 
   102   | 
   103 lemma MAP_PRS:  | 
   103 lemma MAP_PRS:  | 
   104   assumes q1: "Quotient R1 Abs1 Rep1"  | 
   104   assumes q1: "Quotient R1 Abs1 Rep1"  | 
   105   and     q2: "Quotient R2 Abs2 Rep2"  | 
   105   and     q2: "Quotient R2 Abs2 Rep2"  | 
   108    (simp_all add: Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2])  | 
   108    (simp_all add: Quotient_ABS_REP[OF q1] Quotient_ABS_REP[OF q2])  | 
   109   | 
   109   | 
   110 lemma MAP_RSP:  | 
   110 lemma MAP_RSP:  | 
   111   assumes q1: "Quotient R1 Abs1 Rep1"  | 
   111   assumes q1: "Quotient R1 Abs1 Rep1"  | 
   112   and     q2: "Quotient R2 Abs2 Rep2"  | 
   112   and     q2: "Quotient R2 Abs2 Rep2"  | 
   113   and     a: "(R1 ===> R2) f1 f2"   | 
   113   and     a: "(R1 ===> R2) f1 f2"  | 
   114   and     b: "LIST_REL R1 l1 l2"  | 
   114   and     b: "list_rel R1 l1 l2"  | 
   115   shows "LIST_REL R2 (map f1 l1) (map f2 l2)"  | 
   115   shows "list_rel R2 (map f1 l1) (map f2 l2)"  | 
   116 using b a  | 
   116 using b a  | 
   117 by (induct l1 l2 rule: list_induct2')  | 
   117 by (induct l1 l2 rule: list_induct2')  | 
   118    (simp_all)  | 
   118    (simp_all)  | 
   119   | 
   119   | 
   120   | 
   120   |