FSet.thy
changeset 466 42082fc00903
parent 462 0911d3aabf47
child 467 5ca4a927d7f0
--- a/FSet.thy	Mon Nov 30 15:40:22 2009 +0100
+++ b/FSet.thy	Tue Dec 01 12:16:45 2009 +0100
@@ -308,12 +308,7 @@
 apply(tactic {* procedure_tac @{context} @{thm m1} 1 *})
 apply(tactic {* regularize_tac @{context}  [rel_eqv] 1 *})
 apply(tactic {* all_inj_repabs_tac @{context} rty [quot] [rel_refl] [trans2] 1 *})
-ML_prf {* 
-  val rtrm = @{term "\<forall>x. IN x EMPTY = False"}
-  val qtrm = @{term "\<forall>x. x memb [] = False"}
-  val aps = find_aps rtrm qtrm 
-*}
-apply(tactic {* clean_tac @{context} [quot] defs aps 1*})
+apply(tactic {* clean_tac @{context} [quot] defs 1*})
 done
 
 lemma "IN x (INSERT y xa) = (x = y \<or> IN x xa)"
@@ -358,7 +353,7 @@
 apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
 apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *})
 prefer 2
-apply(tactic {* clean_tac @{context} [quot] defs [] 1 *})
+apply(tactic {* clean_tac @{context} [quot] defs 1 *})
 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *)
 apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 2 *) (* lam-lam-elim for R = (===>) *) 
@@ -456,7 +451,7 @@
 apply (tactic {* procedure_tac @{context} @{thm list_induct_part} 1 *})
 apply (tactic {* regularize_tac @{context} [rel_eqv] 1 *})
 prefer 2
-apply (tactic {* clean_tac @{context} [quot] defs [(@{typ "('a list \<Rightarrow> 'c list \<Rightarrow> bool)"},@{typ "('a list \<Rightarrow> 'c fset \<Rightarrow> bool)"})] 1 *})
+apply (tactic {* clean_tac @{context} [quot] defs 1 *})
 apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
 apply (rule FUN_QUOTIENT)
 apply (rule FUN_QUOTIENT)