diff -r ce1f8a284920 -r 42082fc00903 FSet.thy --- a/FSet.thy Mon Nov 30 15:40:22 2009 +0100 +++ b/FSet.thy Tue Dec 01 12:16:45 2009 +0100 @@ -308,12 +308,7 @@ apply(tactic {* procedure_tac @{context} @{thm m1} 1 *}) apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *}) apply(tactic {* all_inj_repabs_tac @{context} rty [quot] [rel_refl] [trans2] 1 *}) -ML_prf {* - val rtrm = @{term "\x. IN x EMPTY = False"} - val qtrm = @{term "\x. x memb [] = False"} - val aps = find_aps rtrm qtrm -*} -apply(tactic {* clean_tac @{context} [quot] defs aps 1*}) +apply(tactic {* clean_tac @{context} [quot] defs 1*}) done lemma "IN x (INSERT y xa) = (x = y \ IN x xa)" @@ -358,7 +353,7 @@ apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *}) apply(tactic {* regularize_tac @{context} [rel_eqv] 1 *}) prefer 2 -apply(tactic {* clean_tac @{context} [quot] defs [] 1 *}) +apply(tactic {* clean_tac @{context} [quot] defs 1 *}) apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *) apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 9 *) (* Rep-Abs-elim - can be complex Rep-Abs *) apply(tactic {* inj_repabs_tac_fset @{context} 1*}) (* 2 *) (* lam-lam-elim for R = (===>) *) @@ -456,7 +451,7 @@ apply (tactic {* procedure_tac @{context} @{thm list_induct_part} 1 *}) apply (tactic {* regularize_tac @{context} [rel_eqv] 1 *}) prefer 2 -apply (tactic {* clean_tac @{context} [quot] defs [(@{typ "('a list \ 'c list \ bool)"},@{typ "('a list \ 'c fset \ bool)"})] 1 *}) +apply (tactic {* clean_tac @{context} [quot] defs 1 *}) apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *}) apply (rule FUN_QUOTIENT) apply (rule FUN_QUOTIENT)