--- a/Unused.thy Tue Jan 26 20:07:50 2010 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,161 +0,0 @@
-(*notation ( output) "prop" ("#_" [1000] 1000) *)
-notation ( output) "Trueprop" ("#_" [1000] 1000)
-
-lemma regularize_to_injection:
- shows "(QUOT_TRUE l \<Longrightarrow> y) \<Longrightarrow> (l = r) \<longrightarrow> y"
- by(auto simp add: QUOT_TRUE_def)
-
-syntax
- "Bexeq" :: "id \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" ("(3\<exists>!!_\<in>_./ _)" [0, 0, 10] 10)
-translations
- "\<exists>!!x\<in>A. P" == "Bexeq A (%x. P)"
-
-
-(* Atomize infrastructure *)
-(* FIXME/TODO: is this really needed? *)
-(*
-lemma atomize_eqv:
- shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
-proof
- assume "A \<equiv> B"
- then show "Trueprop A \<equiv> Trueprop B" by unfold
-next
- assume *: "Trueprop A \<equiv> Trueprop B"
- have "A = B"
- proof (cases A)
- case True
- have "A" by fact
- then show "A = B" using * by simp
- next
- case False
- have "\<not>A" by fact
- then show "A = B" using * by auto
- qed
- then show "A \<equiv> B" by (rule eq_reflection)
-qed
-*)
-
-
-ML {*
- fun dest_cbinop t =
- let
- val (t2, rhs) = Thm.dest_comb t;
- val (bop, lhs) = Thm.dest_comb t2;
- in
- (bop, (lhs, rhs))
- end
-*}
-
-ML {*
- fun dest_ceq t =
- let
- val (bop, pair) = dest_cbinop t;
- val (bop_s, _) = Term.dest_Const (Thm.term_of bop);
- in
- if bop_s = "op =" then pair else (raise CTERM ("Not an equality", [t]))
- end
-*}
-
-ML {*
- fun split_binop_conv t =
- let
- val (lhs, rhs) = dest_ceq t;
- val (bop, _) = dest_cbinop lhs;
- val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
- val [cmT, crT] = Thm.dest_ctyp cr2;
- in
- Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
- end
-*}
-
-
-ML {*
- fun split_arg_conv t =
- let
- val (lhs, rhs) = dest_ceq t;
- val (lop, larg) = Thm.dest_comb lhs;
- val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
- in
- Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
- end
-*}
-
-ML {*
- fun split_binop_tac n thm =
- let
- val concl = Thm.cprem_of thm n;
- val (_, cconcl) = Thm.dest_comb concl;
- val rewr = split_binop_conv cconcl;
- in
- rtac rewr n thm
- end
- handle CTERM _ => Seq.empty
-*}
-
-
-ML {*
- fun split_arg_tac n thm =
- let
- val concl = Thm.cprem_of thm n;
- val (_, cconcl) = Thm.dest_comb concl;
- val rewr = split_arg_conv cconcl;
- in
- rtac rewr n thm
- end
- handle CTERM _ => Seq.empty
-*}
-
-
-lemma trueprop_cong:
- shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
- by auto
-
-lemma list_induct_hol4:
- fixes P :: "'a list \<Rightarrow> bool"
- assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
- shows "\<forall>l. (P l)"
- using a
- apply (rule_tac allI)
- apply (induct_tac "l")
- apply (simp)
- apply (metis)
- done
-
-ML {*
-val no_vars = Thm.rule_attribute (fn context => fn th =>
- let
- val ctxt = Variable.set_body false (Context.proof_of context);
- val ((_, [th']), _) = Variable.import true [th] ctxt;
- in th' end);
-*}
-
-(*lemma equality_twice:
- "a = c \<Longrightarrow> b = d \<Longrightarrow> (a = b \<longrightarrow> c = d)"
-by auto*)
-
-
-(*interpretation code *)
-(*val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list))
- val ((_, [eqn1pre]), lthy5) = Variable.import true [ABS_def] lthy4;
- val eqn1i = Thm.prop_of (symmetric eqn1pre)
- val ((_, [eqn2pre]), lthy6) = Variable.import true [REP_def] lthy5;
- val eqn2i = Thm.prop_of (symmetric eqn2pre)
-
- val exp_morphism = ProofContext.export_morphism lthy6 (ProofContext.init (ProofContext.theory_of lthy6));
- val exp_term = Morphism.term exp_morphism;
- val exp = Morphism.thm exp_morphism;
-
- val mthd = Method.SIMPLE_METHOD ((rtac quot_thm 1) THEN
- ALLGOALS (simp_tac (HOL_basic_ss addsimps [(symmetric (exp ABS_def)), (symmetric (exp REP_def))])))
- val mthdt = Method.Basic (fn _ => mthd)
- val bymt = Proof.global_terminal_proof (mthdt, NONE)
- val exp_i = [(@{const_name QUOT_TYPE}, ((("QUOT_TYPE_I_" ^ (Binding.name_of qty_name)), true),
- Expression.Named [("R", rel), ("Abs", abs), ("Rep", rep) ]))]*)
-
-(*||> Local_Theory.theory (fn thy =>
- let
- val global_eqns = map exp_term [eqn2i, eqn1i];
- (* Not sure if the following context should not be used *)
- val (global_eqns2, lthy7) = Variable.import_terms true global_eqns lthy6;
- val global_eqns3 = map (fn t => (bindd, t)) global_eqns2;
- in ProofContext.theory_of (bymt (Expression.interpretation (exp_i, []) global_eqns3 thy)) end)*)