Unused.thy
changeset 948 25c4223635f4
parent 947 fa810f01f7b5
child 949 aa0c572a0718
equal deleted inserted replaced
947:fa810f01f7b5 948:25c4223635f4
     1 (*notation ( output) "prop" ("#_" [1000] 1000) *)
       
     2 notation ( output) "Trueprop" ("#_" [1000] 1000)
       
     3 
       
     4 lemma regularize_to_injection:
       
     5   shows "(QUOT_TRUE l \<Longrightarrow> y) \<Longrightarrow> (l = r) \<longrightarrow> y"
       
     6   by(auto simp add: QUOT_TRUE_def)
       
     7 
       
     8 syntax
       
     9   "Bexeq" :: "id \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" ("(3\<exists>!!_\<in>_./ _)" [0, 0, 10] 10)
       
    10 translations
       
    11   "\<exists>!!x\<in>A. P"  == "Bexeq A (%x. P)"
       
    12 
       
    13 
       
    14 (* Atomize infrastructure *)
       
    15 (* FIXME/TODO: is this really needed? *)
       
    16 (*
       
    17 lemma atomize_eqv:
       
    18   shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
       
    19 proof
       
    20   assume "A \<equiv> B"
       
    21   then show "Trueprop A \<equiv> Trueprop B" by unfold
       
    22 next
       
    23   assume *: "Trueprop A \<equiv> Trueprop B"
       
    24   have "A = B"
       
    25   proof (cases A)
       
    26     case True
       
    27     have "A" by fact
       
    28     then show "A = B" using * by simp
       
    29   next
       
    30     case False
       
    31     have "\<not>A" by fact
       
    32     then show "A = B" using * by auto
       
    33   qed
       
    34   then show "A \<equiv> B" by (rule eq_reflection)
       
    35 qed
       
    36 *)
       
    37 
       
    38 
       
    39 ML {*
       
    40   fun dest_cbinop t =
       
    41     let
       
    42       val (t2, rhs) = Thm.dest_comb t;
       
    43       val (bop, lhs) = Thm.dest_comb t2;
       
    44     in
       
    45       (bop, (lhs, rhs))
       
    46     end
       
    47 *}
       
    48 
       
    49 ML {*
       
    50   fun dest_ceq t =
       
    51     let
       
    52       val (bop, pair) = dest_cbinop t;
       
    53       val (bop_s, _) = Term.dest_Const (Thm.term_of bop);
       
    54     in
       
    55       if bop_s = "op =" then pair else (raise CTERM ("Not an equality", [t]))
       
    56     end
       
    57 *}
       
    58 
       
    59 ML {*
       
    60   fun split_binop_conv t =
       
    61     let
       
    62       val (lhs, rhs) = dest_ceq t;
       
    63       val (bop, _) = dest_cbinop lhs;
       
    64       val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
       
    65       val [cmT, crT] = Thm.dest_ctyp cr2;
       
    66     in
       
    67       Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
       
    68     end
       
    69 *}
       
    70 
       
    71 
       
    72 ML {*
       
    73   fun split_arg_conv t =
       
    74     let
       
    75       val (lhs, rhs) = dest_ceq t;
       
    76       val (lop, larg) = Thm.dest_comb lhs;
       
    77       val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
       
    78     in
       
    79       Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
       
    80     end
       
    81 *}
       
    82 
       
    83 ML {*
       
    84   fun split_binop_tac n thm =
       
    85     let
       
    86       val concl = Thm.cprem_of thm n;
       
    87       val (_, cconcl) = Thm.dest_comb concl;
       
    88       val rewr = split_binop_conv cconcl;
       
    89     in
       
    90       rtac rewr n thm
       
    91     end
       
    92       handle CTERM _ => Seq.empty
       
    93 *}
       
    94 
       
    95 
       
    96 ML {*
       
    97   fun split_arg_tac n thm =
       
    98     let
       
    99       val concl = Thm.cprem_of thm n;
       
   100       val (_, cconcl) = Thm.dest_comb concl;
       
   101       val rewr = split_arg_conv cconcl;
       
   102     in
       
   103       rtac rewr n thm
       
   104     end
       
   105       handle CTERM _ => Seq.empty
       
   106 *}
       
   107 
       
   108 
       
   109 lemma trueprop_cong:
       
   110   shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
       
   111   by auto
       
   112 
       
   113 lemma list_induct_hol4:
       
   114   fixes P :: "'a list \<Rightarrow> bool"
       
   115   assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
       
   116   shows "\<forall>l. (P l)"
       
   117   using a
       
   118   apply (rule_tac allI)
       
   119   apply (induct_tac "l")
       
   120   apply (simp)
       
   121   apply (metis)
       
   122   done
       
   123 
       
   124 ML {*
       
   125 val no_vars = Thm.rule_attribute (fn context => fn th =>
       
   126   let
       
   127     val ctxt = Variable.set_body false (Context.proof_of context);
       
   128     val ((_, [th']), _) = Variable.import true [th] ctxt;
       
   129   in th' end);
       
   130 *}
       
   131 
       
   132 (*lemma equality_twice:
       
   133   "a = c \<Longrightarrow> b = d \<Longrightarrow> (a = b \<longrightarrow> c = d)"
       
   134 by auto*)
       
   135 
       
   136 
       
   137 (*interpretation code *)
       
   138 (*val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list))
       
   139   val ((_, [eqn1pre]), lthy5) = Variable.import true [ABS_def] lthy4;
       
   140   val eqn1i = Thm.prop_of (symmetric eqn1pre)
       
   141   val ((_, [eqn2pre]), lthy6) = Variable.import true [REP_def] lthy5;
       
   142   val eqn2i = Thm.prop_of (symmetric eqn2pre)
       
   143 
       
   144   val exp_morphism = ProofContext.export_morphism lthy6 (ProofContext.init (ProofContext.theory_of lthy6));
       
   145   val exp_term = Morphism.term exp_morphism;
       
   146   val exp = Morphism.thm exp_morphism;
       
   147 
       
   148   val mthd = Method.SIMPLE_METHOD ((rtac quot_thm 1) THEN
       
   149     ALLGOALS (simp_tac (HOL_basic_ss addsimps [(symmetric (exp ABS_def)), (symmetric (exp REP_def))])))
       
   150   val mthdt = Method.Basic (fn _ => mthd)
       
   151   val bymt = Proof.global_terminal_proof (mthdt, NONE)
       
   152   val exp_i = [(@{const_name QUOT_TYPE}, ((("QUOT_TYPE_I_" ^ (Binding.name_of qty_name)), true),
       
   153     Expression.Named [("R", rel), ("Abs", abs), ("Rep", rep) ]))]*)
       
   154 
       
   155 (*||> Local_Theory.theory (fn thy =>
       
   156       let
       
   157         val global_eqns = map exp_term [eqn2i, eqn1i];
       
   158         (* Not sure if the following context should not be used *)
       
   159         val (global_eqns2, lthy7) = Variable.import_terms true global_eqns lthy6;
       
   160         val global_eqns3 = map (fn t => (bindd, t)) global_eqns2;
       
   161       in ProofContext.theory_of (bymt (Expression.interpretation (exp_i, []) global_eqns3 thy)) end)*)