--- a/Nominal/nominal_dt_rawperm.ML Sat Aug 14 16:54:41 2010 +0800
+++ b/Nominal/nominal_dt_rawperm.ML Sat Aug 14 23:33:23 2010 +0800
@@ -9,7 +9,7 @@
signature NOMINAL_DT_RAWPERM =
sig
- val define_raw_perms: Datatype.descr -> (string * sort) list -> thm -> int -> theory ->
+ val define_raw_perms: string list -> typ list -> term list -> thm -> theory ->
(term list * thm list * thm list) * theory
end
@@ -18,39 +18,6 @@
struct
-(* permutation function for one argument
-
- - in case the argument is recursive it returns
-
- permute_fn p arg
-
- - in case the argument is non-recursive it will return
-
- p o arg
-*)
-fun perm_arg permute_fn_frees p (arg_dty, arg) =
- if Datatype_Aux.is_rec_type arg_dty
- then (nth permute_fn_frees (Datatype_Aux.body_index arg_dty)) $ p $ arg
- else mk_perm p arg
-
-
-(* generates the equation for the permutation function for one constructor;
- i is the index of the corresponding datatype *)
-fun perm_eq_constr dt_descr sorts permute_fn_frees i (cnstr_name, dts) =
-let
- val p = Free ("p", @{typ perm})
- val arg_tys = map (Datatype_Aux.typ_of_dtyp dt_descr sorts) dts
- val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
- val args = map Free (arg_names ~~ arg_tys)
- val cnstr = Const (cnstr_name, arg_tys ---> (nth_dtyp dt_descr sorts i))
- val lhs = (nth permute_fn_frees i) $ p $ list_comb (cnstr, args)
- val rhs = list_comb (cnstr, map (perm_arg permute_fn_frees p) (dts ~~ args))
- val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
-in
- (Attrib.empty_binding, eq)
-end
-
-
(** proves the two pt-type class properties **)
fun prove_permute_zero lthy induct perm_defs perm_fns =
@@ -99,49 +66,62 @@
end
-(* user_dt_nos refers to the number of "un-unfolded" datatypes
- given by the user
-*)
-fun define_raw_perms dt_descr sorts induct_thm user_dt_nos thy =
+fun mk_perm_eq ty_perm_assoc cnstr =
let
- val all_full_tnames = map (fn (_, (n, _, _)) => n) dt_descr;
- val user_full_tnames = List.take (all_full_tnames, user_dt_nos);
+ fun lookup_perm p (ty, arg) =
+ case (AList.lookup (op=) ty_perm_assoc ty) of
+ SOME perm => perm $ p $ arg
+ | NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg
+
+ val p = Free ("p", @{typ perm})
+ val (arg_tys, ty) =
+ fastype_of cnstr
+ |> strip_type
+
+ val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
+ val args = map Free (arg_names ~~ arg_tys)
- val perm_fn_names = prefix_dt_names dt_descr sorts "permute_"
- val perm_fn_types = map (fn (i, _) => perm_ty (nth_dtyp dt_descr sorts i)) dt_descr
- val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
+ val lhs = lookup_perm p (ty, list_comb (cnstr, args))
+ val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args))
+
+ val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
+in
+ (Attrib.empty_binding, eq)
+end
+
- fun perm_eq (i, (_, _, constrs)) =
- map (perm_eq_constr dt_descr sorts perm_fn_frees i) constrs;
+fun define_raw_perms full_ty_names tys constrs induct_thm thy =
+let
+ val perm_fn_names = full_ty_names
+ |> map Long_Name.base_name
+ |> map (prefix "permute_")
- val perm_eqs = maps perm_eq dt_descr;
+ val perm_fn_types = map perm_ty tys
+ val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
+ val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names
+
+ val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs
val lthy =
- Class.instantiation (user_full_tnames, [], @{sort pt}) thy;
+ Class.instantiation (full_ty_names, [], @{sort pt}) thy
val ((perm_funs, perm_eq_thms), lthy') =
- Primrec.add_primrec
- (map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names) perm_eqs lthy;
+ Primrec.add_primrec perm_fn_binds perm_eqs lthy;
val perm_zero_thms = prove_permute_zero lthy' induct_thm perm_eq_thms perm_funs
val perm_plus_thms = prove_permute_plus lthy' induct_thm perm_eq_thms perm_funs
- val perm_zero_thms' = List.take (perm_zero_thms, user_dt_nos);
- val perm_plus_thms' = List.take (perm_plus_thms, user_dt_nos)
- val perms_name = space_implode "_" perm_fn_names
- val perms_zero_bind = Binding.name (perms_name ^ "_zero")
- val perms_plus_bind = Binding.name (perms_name ^ "_plus")
fun tac _ (_, _, simps) =
Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
fun morphism phi (fvs, dfs, simps) =
- (map (Morphism.term phi) fvs, map (Morphism.thm phi) dfs, map (Morphism.thm phi) simps);
+ (map (Morphism.term phi) fvs,
+ map (Morphism.thm phi) dfs,
+ map (Morphism.thm phi) simps);
in
lthy'
- |> snd o (Local_Theory.note ((perms_zero_bind, []), perm_zero_thms'))
- |> snd o (Local_Theory.note ((perms_plus_bind, []), perm_plus_thms'))
|> Class.prove_instantiation_exit_result morphism tac
- (perm_funs, perm_eq_thms, perm_zero_thms' @ perm_plus_thms')
+ (perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms)
end