(* Title: nominal_dt_rawperm.ML
Author: Cezary Kaliszyk
Author: Christian Urban
Definitions of the raw permutations and
proof that the raw datatypes are in the
pt-class.
*)
signature NOMINAL_DT_RAWPERM =
sig
val define_raw_perms: string list -> typ list -> term list -> thm -> theory ->
(term list * thm list * thm list) * theory
end
structure Nominal_Dt_RawPerm: NOMINAL_DT_RAWPERM =
struct
(** proves the two pt-type class properties **)
fun prove_permute_zero lthy induct perm_defs perm_fns =
let
val perm_types = map (body_type o fastype_of) perm_fns
val perm_indnames = Datatype_Prop.make_tnames perm_types
fun single_goal ((perm_fn, T), x) =
HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))
val goals =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)
val tac = (Datatype_Aux.indtac induct perm_indnames
THEN_ALL_NEW asm_simp_tac simps) 1
in
Goal.prove lthy perm_indnames [] goals (K tac)
|> Datatype_Aux.split_conj_thm
end
fun prove_permute_plus lthy induct perm_defs perm_fns =
let
val p = Free ("p", @{typ perm})
val q = Free ("q", @{typ perm})
val perm_types = map (body_type o fastype_of) perm_fns
val perm_indnames = Datatype_Prop.make_tnames perm_types
fun single_goal ((perm_fn, T), x) = HOLogic.mk_eq
(perm_fn $ (mk_plus p q) $ Free (x, T), perm_fn $ p $ (perm_fn $ q $ Free (x, T)))
val goals =
HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
(map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)
val tac = (Datatype_Aux.indtac induct perm_indnames
THEN_ALL_NEW asm_simp_tac simps) 1
in
Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
|> Datatype_Aux.split_conj_thm
end
fun mk_perm_eq ty_perm_assoc cnstr =
let
fun lookup_perm p (ty, arg) =
case (AList.lookup (op=) ty_perm_assoc ty) of
SOME perm => perm $ p $ arg
| NONE => Const (@{const_name permute}, perm_ty ty) $ p $ arg
val p = Free ("p", @{typ perm})
val (arg_tys, ty) =
fastype_of cnstr
|> strip_type
val arg_names = Name.variant_list ["p"] (Datatype_Prop.make_tnames arg_tys)
val args = map Free (arg_names ~~ arg_tys)
val lhs = lookup_perm p (ty, list_comb (cnstr, args))
val rhs = list_comb (cnstr, map (lookup_perm p) (arg_tys ~~ args))
val eq = HOLogic.mk_Trueprop (HOLogic.mk_eq (lhs, rhs))
in
(Attrib.empty_binding, eq)
end
fun define_raw_perms full_ty_names tys constrs induct_thm thy =
let
val perm_fn_names = full_ty_names
|> map Long_Name.base_name
|> map (prefix "permute_")
val perm_fn_types = map perm_ty tys
val perm_fn_frees = map Free (perm_fn_names ~~ perm_fn_types)
val perm_fn_binds = map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names
val perm_eqs = map (mk_perm_eq (tys ~~ perm_fn_frees)) constrs
val lthy =
Class.instantiation (full_ty_names, [], @{sort pt}) thy
val ((perm_funs, perm_eq_thms), lthy') =
Primrec.add_primrec perm_fn_binds perm_eqs lthy;
val perm_zero_thms = prove_permute_zero lthy' induct_thm perm_eq_thms perm_funs
val perm_plus_thms = prove_permute_plus lthy' induct_thm perm_eq_thms perm_funs
fun tac _ (_, _, simps) =
Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
fun morphism phi (fvs, dfs, simps) =
(map (Morphism.term phi) fvs,
map (Morphism.thm phi) dfs,
map (Morphism.thm phi) simps);
in
lthy'
|> Class.prove_instantiation_exit_result morphism tac
(perm_funs, perm_eq_thms, perm_zero_thms @ perm_plus_thms)
end
end (* structure *)