Nominal/Nominal2_Base.thy
changeset 3231 188826f1ccdb
parent 3229 b52e8651591f
child 3233 9ae285ce814e
--- a/Nominal/Nominal2_Base.thy	Thu Mar 13 09:30:26 2014 +0000
+++ b/Nominal/Nominal2_Base.thy	Mon Mar 24 15:31:17 2014 +0000
@@ -2167,7 +2167,7 @@
 proof -
   have "(\<Union>{supp x | x. x \<in># M}) = (\<Union>{supp x | x. x \<in> set_of M})" by simp
   also have "... \<subseteq> (\<Union>x \<in> set_of M. supp x)" by auto
-  also have "... = supp (set_of M)" by (simp add: subst supp_of_finite_sets)
+  also have "... = supp (set_of M)" by (simp add: supp_of_finite_sets)
   also have " ... \<subseteq> supp M" by (rule supp_set_of)
   finally show "(\<Union>{supp x | x. x \<in># M}) \<subseteq> supp M" .
 qed