Nominal/Nominal2_Base.thy
changeset 3231 188826f1ccdb
parent 3229 b52e8651591f
child 3233 9ae285ce814e
equal deleted inserted replaced
3230:b33b42211bbf 3231:188826f1ccdb
  2165   fixes M::"('a::fs multiset)" 
  2165   fixes M::"('a::fs multiset)" 
  2166   shows "(\<Union>{supp x | x. x \<in># M}) \<subseteq> supp M"
  2166   shows "(\<Union>{supp x | x. x \<in># M}) \<subseteq> supp M"
  2167 proof -
  2167 proof -
  2168   have "(\<Union>{supp x | x. x \<in># M}) = (\<Union>{supp x | x. x \<in> set_of M})" by simp
  2168   have "(\<Union>{supp x | x. x \<in># M}) = (\<Union>{supp x | x. x \<in> set_of M})" by simp
  2169   also have "... \<subseteq> (\<Union>x \<in> set_of M. supp x)" by auto
  2169   also have "... \<subseteq> (\<Union>x \<in> set_of M. supp x)" by auto
  2170   also have "... = supp (set_of M)" by (simp add: subst supp_of_finite_sets)
  2170   also have "... = supp (set_of M)" by (simp add: supp_of_finite_sets)
  2171   also have " ... \<subseteq> supp M" by (rule supp_set_of)
  2171   also have " ... \<subseteq> supp M" by (rule supp_set_of)
  2172   finally show "(\<Union>{supp x | x. x \<in># M}) \<subseteq> supp M" .
  2172   finally show "(\<Union>{supp x | x. x \<in># M}) \<subseteq> supp M" .
  2173 qed
  2173 qed
  2174 
  2174 
  2175 lemma supp_of_multisets:
  2175 lemma supp_of_multisets: