--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/Quotient_Sum.thy Thu Feb 11 10:06:02 2010 +0100
@@ -0,0 +1,96 @@
+(* Title: Quotient_Sum.thy
+ Author: Cezary Kaliszyk and Christian Urban
+*)
+theory Quotient_Sum
+imports Quotient
+begin
+
+section {* Quotient infrastructure for the sum type. *}
+
+fun
+ sum_rel
+where
+ "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1"
+| "sum_rel R1 R2 (Inl a1) (Inr b2) = False"
+| "sum_rel R1 R2 (Inr a2) (Inl b1) = False"
+| "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2"
+
+fun
+ sum_map
+where
+ "sum_map f1 f2 (Inl a) = Inl (f1 a)"
+| "sum_map f1 f2 (Inr a) = Inr (f2 a)"
+
+declare [[map "+" = (sum_map, sum_rel)]]
+
+
+text {* should probably be in Sum_Type.thy *}
+lemma split_sum_all:
+ shows "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x. P (Inl x)) \<and> (\<forall>x. P (Inr x))"
+ apply(auto)
+ apply(case_tac x)
+ apply(simp_all)
+ done
+
+lemma sum_equivp[quot_equiv]:
+ assumes a: "equivp R1"
+ assumes b: "equivp R2"
+ shows "equivp (sum_rel R1 R2)"
+ apply(rule equivpI)
+ unfolding reflp_def symp_def transp_def
+ apply(simp_all add: split_sum_all)
+ apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b])
+ apply(blast intro: equivp_symp[OF a] equivp_symp[OF b])
+ apply(blast intro: equivp_transp[OF a] equivp_transp[OF b])
+ done
+
+lemma sum_quotient[quot_thm]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)"
+ unfolding Quotient_def
+ apply(simp add: split_sum_all)
+ apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1])
+ apply(simp_all add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2])
+ using q1 q2
+ unfolding Quotient_def
+ apply(blast)+
+ done
+
+lemma sum_Inl_rsp[quot_respect]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(R1 ===> sum_rel R1 R2) Inl Inl"
+ by simp
+
+lemma sum_Inr_rsp[quot_respect]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(R2 ===> sum_rel R1 R2) Inr Inr"
+ by simp
+
+lemma sum_Inl_prs[quot_preserve]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl"
+ apply(simp add: expand_fun_eq)
+ apply(simp add: Quotient_abs_rep[OF q1])
+ done
+
+lemma sum_Inr_prs[quot_preserve]:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ assumes q2: "Quotient R2 Abs2 Rep2"
+ shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr"
+ apply(simp add: expand_fun_eq)
+ apply(simp add: Quotient_abs_rep[OF q2])
+ done
+
+lemma sum_map_id[id_simps]:
+ shows "sum_map id id = id"
+ by (simp add: expand_fun_eq split_sum_all)
+
+lemma sum_rel_eq[id_simps]:
+ shows "sum_rel (op =) (op =) = (op =)"
+ by (simp add: expand_fun_eq split_sum_all)
+
+end