diff -r 243a5ceaa088 -r 17ca92ab4660 Quot/Quotient_Sum.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Quot/Quotient_Sum.thy Thu Feb 11 10:06:02 2010 +0100 @@ -0,0 +1,96 @@ +(* Title: Quotient_Sum.thy + Author: Cezary Kaliszyk and Christian Urban +*) +theory Quotient_Sum +imports Quotient +begin + +section {* Quotient infrastructure for the sum type. *} + +fun + sum_rel +where + "sum_rel R1 R2 (Inl a1) (Inl b1) = R1 a1 b1" +| "sum_rel R1 R2 (Inl a1) (Inr b2) = False" +| "sum_rel R1 R2 (Inr a2) (Inl b1) = False" +| "sum_rel R1 R2 (Inr a2) (Inr b2) = R2 a2 b2" + +fun + sum_map +where + "sum_map f1 f2 (Inl a) = Inl (f1 a)" +| "sum_map f1 f2 (Inr a) = Inr (f2 a)" + +declare [[map "+" = (sum_map, sum_rel)]] + + +text {* should probably be in Sum_Type.thy *} +lemma split_sum_all: + shows "(\x. P x) \ (\x. P (Inl x)) \ (\x. P (Inr x))" + apply(auto) + apply(case_tac x) + apply(simp_all) + done + +lemma sum_equivp[quot_equiv]: + assumes a: "equivp R1" + assumes b: "equivp R2" + shows "equivp (sum_rel R1 R2)" + apply(rule equivpI) + unfolding reflp_def symp_def transp_def + apply(simp_all add: split_sum_all) + apply(blast intro: equivp_reflp[OF a] equivp_reflp[OF b]) + apply(blast intro: equivp_symp[OF a] equivp_symp[OF b]) + apply(blast intro: equivp_transp[OF a] equivp_transp[OF b]) + done + +lemma sum_quotient[quot_thm]: + assumes q1: "Quotient R1 Abs1 Rep1" + assumes q2: "Quotient R2 Abs2 Rep2" + shows "Quotient (sum_rel R1 R2) (sum_map Abs1 Abs2) (sum_map Rep1 Rep2)" + unfolding Quotient_def + apply(simp add: split_sum_all) + apply(simp_all add: Quotient_abs_rep[OF q1] Quotient_rel_rep[OF q1]) + apply(simp_all add: Quotient_abs_rep[OF q2] Quotient_rel_rep[OF q2]) + using q1 q2 + unfolding Quotient_def + apply(blast)+ + done + +lemma sum_Inl_rsp[quot_respect]: + assumes q1: "Quotient R1 Abs1 Rep1" + assumes q2: "Quotient R2 Abs2 Rep2" + shows "(R1 ===> sum_rel R1 R2) Inl Inl" + by simp + +lemma sum_Inr_rsp[quot_respect]: + assumes q1: "Quotient R1 Abs1 Rep1" + assumes q2: "Quotient R2 Abs2 Rep2" + shows "(R2 ===> sum_rel R1 R2) Inr Inr" + by simp + +lemma sum_Inl_prs[quot_preserve]: + assumes q1: "Quotient R1 Abs1 Rep1" + assumes q2: "Quotient R2 Abs2 Rep2" + shows "(Rep1 ---> sum_map Abs1 Abs2) Inl = Inl" + apply(simp add: expand_fun_eq) + apply(simp add: Quotient_abs_rep[OF q1]) + done + +lemma sum_Inr_prs[quot_preserve]: + assumes q1: "Quotient R1 Abs1 Rep1" + assumes q2: "Quotient R2 Abs2 Rep2" + shows "(Rep2 ---> sum_map Abs1 Abs2) Inr = Inr" + apply(simp add: expand_fun_eq) + apply(simp add: Quotient_abs_rep[OF q2]) + done + +lemma sum_map_id[id_simps]: + shows "sum_map id id = id" + by (simp add: expand_fun_eq split_sum_all) + +lemma sum_rel_eq[id_simps]: + shows "sum_rel (op =) (op =) = (op =)" + by (simp add: expand_fun_eq split_sum_all) + +end