--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Quot/Quotient.thy Thu Feb 11 10:06:02 2010 +0100
@@ -0,0 +1,802 @@
+(* Title: QuotMain.thy
+ Author: Cezary Kaliszyk and Christian Urban
+*)
+
+theory Quotient
+imports Plain ATP_Linkup
+uses
+ ("quotient_info.ML")
+ ("quotient_typ.ML")
+ ("quotient_def.ML")
+ ("quotient_term.ML")
+ ("quotient_tacs.ML")
+begin
+
+text {*
+ Basic definition for equivalence relations
+ that are represented by predicates.
+*}
+
+definition
+ "equivp E \<longleftrightarrow> (\<forall>x y. E x y = (E x = E y))"
+
+definition
+ "reflp E \<longleftrightarrow> (\<forall>x. E x x)"
+
+definition
+ "symp E \<longleftrightarrow> (\<forall>x y. E x y \<longrightarrow> E y x)"
+
+definition
+ "transp E \<longleftrightarrow> (\<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z)"
+
+lemma equivp_reflp_symp_transp:
+ shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
+ unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
+ by blast
+
+lemma equivp_reflp:
+ shows "equivp E \<Longrightarrow> E x x"
+ by (simp only: equivp_reflp_symp_transp reflp_def)
+
+lemma equivp_symp:
+ shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y x"
+ by (metis equivp_reflp_symp_transp symp_def)
+
+lemma equivp_transp:
+ shows "equivp E \<Longrightarrow> E x y \<Longrightarrow> E y z \<Longrightarrow> E x z"
+ by (metis equivp_reflp_symp_transp transp_def)
+
+lemma equivpI:
+ assumes "reflp R" "symp R" "transp R"
+ shows "equivp R"
+ using assms by (simp add: equivp_reflp_symp_transp)
+
+lemma eq_imp_rel:
+ shows "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b"
+ by (simp add: equivp_reflp)
+
+lemma identity_equivp:
+ shows "equivp (op =)"
+ unfolding equivp_def
+ by auto
+
+
+text {* Partial equivalences: not yet used anywhere *}
+definition
+ "part_equivp E \<longleftrightarrow> ((\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y))))"
+
+lemma equivp_implies_part_equivp:
+ assumes a: "equivp E"
+ shows "part_equivp E"
+ using a
+ unfolding equivp_def part_equivp_def
+ by auto
+
+text {* Composition of Relations *}
+
+abbreviation
+ rel_conj (infixr "OOO" 75)
+where
+ "r1 OOO r2 \<equiv> r1 OO r2 OO r1"
+
+lemma eq_comp_r:
+ shows "((op =) OOO R) = R"
+ by (auto simp add: expand_fun_eq)
+
+section {* Respects predicate *}
+
+definition
+ Respects
+where
+ "Respects R x \<longleftrightarrow> (R x x)"
+
+lemma in_respects:
+ shows "(x \<in> Respects R) = R x x"
+ unfolding mem_def Respects_def
+ by simp
+
+section {* Function map and function relation *}
+
+definition
+ fun_map (infixr "--->" 55)
+where
+[simp]: "fun_map f g h x = g (h (f x))"
+
+definition
+ fun_rel (infixr "===>" 55)
+where
+[simp]: "fun_rel E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))"
+
+
+lemma fun_map_id:
+ shows "(id ---> id) = id"
+ by (simp add: expand_fun_eq id_def)
+
+lemma fun_rel_eq:
+ shows "((op =) ===> (op =)) = (op =)"
+ by (simp add: expand_fun_eq)
+
+lemma fun_rel_id:
+ assumes a: "\<And>x y. R1 x y \<Longrightarrow> R2 (f x) (g y)"
+ shows "(R1 ===> R2) f g"
+ using a by simp
+
+lemma fun_rel_id_asm:
+ assumes a: "\<And>x y. R1 x y \<Longrightarrow> (A \<longrightarrow> R2 (f x) (g y))"
+ shows "A \<longrightarrow> (R1 ===> R2) f g"
+ using a by auto
+
+
+section {* Quotient Predicate *}
+
+definition
+ "Quotient E Abs Rep \<longleftrightarrow>
+ (\<forall>a. Abs (Rep a) = a) \<and> (\<forall>a. E (Rep a) (Rep a)) \<and>
+ (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
+
+lemma Quotient_abs_rep:
+ assumes a: "Quotient E Abs Rep"
+ shows "Abs (Rep a) = a"
+ using a
+ unfolding Quotient_def
+ by simp
+
+lemma Quotient_rep_reflp:
+ assumes a: "Quotient E Abs Rep"
+ shows "E (Rep a) (Rep a)"
+ using a
+ unfolding Quotient_def
+ by blast
+
+lemma Quotient_rel:
+ assumes a: "Quotient E Abs Rep"
+ shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
+ using a
+ unfolding Quotient_def
+ by blast
+
+lemma Quotient_rel_rep:
+ assumes a: "Quotient R Abs Rep"
+ shows "R (Rep a) (Rep b) = (a = b)"
+ using a
+ unfolding Quotient_def
+ by metis
+
+lemma Quotient_rep_abs:
+ assumes a: "Quotient R Abs Rep"
+ shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
+ using a unfolding Quotient_def
+ by blast
+
+lemma Quotient_rel_abs:
+ assumes a: "Quotient E Abs Rep"
+ shows "E r s \<Longrightarrow> Abs r = Abs s"
+ using a unfolding Quotient_def
+ by blast
+
+lemma Quotient_symp:
+ assumes a: "Quotient E Abs Rep"
+ shows "symp E"
+ using a unfolding Quotient_def symp_def
+ by metis
+
+lemma Quotient_transp:
+ assumes a: "Quotient E Abs Rep"
+ shows "transp E"
+ using a unfolding Quotient_def transp_def
+ by metis
+
+lemma identity_quotient:
+ shows "Quotient (op =) id id"
+ unfolding Quotient_def id_def
+ by blast
+
+lemma fun_quotient:
+ assumes q1: "Quotient R1 abs1 rep1"
+ and q2: "Quotient R2 abs2 rep2"
+ shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+proof -
+ have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
+ using q1 q2
+ unfolding Quotient_def
+ unfolding expand_fun_eq
+ by simp
+ moreover
+ have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
+ using q1 q2
+ unfolding Quotient_def
+ by (simp (no_asm)) (metis)
+ moreover
+ have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and>
+ (rep1 ---> abs2) r = (rep1 ---> abs2) s)"
+ unfolding expand_fun_eq
+ apply(auto)
+ using q1 q2 unfolding Quotient_def
+ apply(metis)
+ using q1 q2 unfolding Quotient_def
+ apply(metis)
+ using q1 q2 unfolding Quotient_def
+ apply(metis)
+ using q1 q2 unfolding Quotient_def
+ apply(metis)
+ done
+ ultimately
+ show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
+ unfolding Quotient_def by blast
+qed
+
+lemma abs_o_rep:
+ assumes a: "Quotient R Abs Rep"
+ shows "Abs o Rep = id"
+ unfolding expand_fun_eq
+ by (simp add: Quotient_abs_rep[OF a])
+
+lemma equals_rsp:
+ assumes q: "Quotient R Abs Rep"
+ and a: "R xa xb" "R ya yb"
+ shows "R xa ya = R xb yb"
+ using a Quotient_symp[OF q] Quotient_transp[OF q]
+ unfolding symp_def transp_def
+ by blast
+
+lemma lambda_prs:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
+ unfolding expand_fun_eq
+ using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+ by simp
+
+lemma lambda_prs1:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
+ unfolding expand_fun_eq
+ using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+ by simp
+
+lemma rep_abs_rsp:
+ assumes q: "Quotient R Abs Rep"
+ and a: "R x1 x2"
+ shows "R x1 (Rep (Abs x2))"
+ using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
+ by metis
+
+lemma rep_abs_rsp_left:
+ assumes q: "Quotient R Abs Rep"
+ and a: "R x1 x2"
+ shows "R (Rep (Abs x1)) x2"
+ using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
+ by metis
+
+text{*
+ In the following theorem R1 can be instantiated with anything,
+ but we know some of the types of the Rep and Abs functions;
+ so by solving Quotient assumptions we can get a unique R1 that
+ will be provable; which is why we need to use apply_rsp and
+ not the primed version *}
+
+lemma apply_rsp:
+ fixes f g::"'a \<Rightarrow> 'c"
+ assumes q: "Quotient R1 Abs1 Rep1"
+ and a: "(R1 ===> R2) f g" "R1 x y"
+ shows "R2 (f x) (g y)"
+ using a by simp
+
+lemma apply_rsp':
+ assumes a: "(R1 ===> R2) f g" "R1 x y"
+ shows "R2 (f x) (g y)"
+ using a by simp
+
+section {* lemmas for regularisation of ball and bex *}
+
+lemma ball_reg_eqv:
+ fixes P :: "'a \<Rightarrow> bool"
+ assumes a: "equivp R"
+ shows "Ball (Respects R) P = (All P)"
+ using a
+ unfolding equivp_def
+ by (auto simp add: in_respects)
+
+lemma bex_reg_eqv:
+ fixes P :: "'a \<Rightarrow> bool"
+ assumes a: "equivp R"
+ shows "Bex (Respects R) P = (Ex P)"
+ using a
+ unfolding equivp_def
+ by (auto simp add: in_respects)
+
+lemma ball_reg_right:
+ assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
+ shows "All P \<longrightarrow> Ball R Q"
+ using a by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma bex_reg_left:
+ assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
+ shows "Bex R Q \<longrightarrow> Ex P"
+ using a by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma ball_reg_left:
+ assumes a: "equivp R"
+ shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
+ using a by (metis equivp_reflp in_respects)
+
+lemma bex_reg_right:
+ assumes a: "equivp R"
+ shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
+ using a by (metis equivp_reflp in_respects)
+
+lemma ball_reg_eqv_range:
+ fixes P::"'a \<Rightarrow> bool"
+ and x::"'a"
+ assumes a: "equivp R2"
+ shows "(Ball (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = All (\<lambda>f. P (f x)))"
+ apply(rule iffI)
+ apply(rule allI)
+ apply(drule_tac x="\<lambda>y. f x" in bspec)
+ apply(simp add: in_respects)
+ apply(rule impI)
+ using a equivp_reflp_symp_transp[of "R2"]
+ apply(simp add: reflp_def)
+ apply(simp)
+ apply(simp)
+ done
+
+lemma bex_reg_eqv_range:
+ assumes a: "equivp R2"
+ shows "(Bex (Respects (R1 ===> R2)) (\<lambda>f. P (f x)) = Ex (\<lambda>f. P (f x)))"
+ apply(auto)
+ apply(rule_tac x="\<lambda>y. f x" in bexI)
+ apply(simp)
+ apply(simp add: Respects_def in_respects)
+ apply(rule impI)
+ using a equivp_reflp_symp_transp[of "R2"]
+ apply(simp add: reflp_def)
+ done
+
+lemma all_reg:
+ assumes a: "!x :: 'a. (P x --> Q x)"
+ and b: "All P"
+ shows "All Q"
+ using a b by (metis)
+
+lemma ex_reg:
+ assumes a: "!x :: 'a. (P x --> Q x)"
+ and b: "Ex P"
+ shows "Ex Q"
+ using a b by metis
+
+lemma ball_reg:
+ assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+ and b: "Ball R P"
+ shows "Ball R Q"
+ using a b by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma bex_reg:
+ assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+ and b: "Bex R P"
+ shows "Bex R Q"
+ using a b by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma ball_all_comm:
+ assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
+ shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
+ using assms by auto
+
+lemma bex_ex_comm:
+ assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
+ shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
+ using assms by auto
+
+section {* Bounded abstraction *}
+
+definition
+ Babs :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b"
+where
+ "x \<in> p \<Longrightarrow> Babs p m x = m x"
+
+lemma babs_rsp:
+ assumes q: "Quotient R1 Abs1 Rep1"
+ and a: "(R1 ===> R2) f g"
+ shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
+ apply (auto simp add: Babs_def in_respects)
+ apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
+ using a apply (simp add: Babs_def)
+ apply (simp add: in_respects)
+ using Quotient_rel[OF q]
+ by metis
+
+lemma babs_prs:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f"
+ apply (rule ext)
+ apply (simp)
+ apply (subgoal_tac "Rep1 x \<in> Respects R1")
+ apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2])
+ apply (simp add: in_respects Quotient_rel_rep[OF q1])
+ done
+
+lemma babs_simp:
+ assumes q: "Quotient R1 Abs Rep"
+ shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)"
+ apply(rule iffI)
+ apply(simp_all only: babs_rsp[OF q])
+ apply(auto simp add: Babs_def)
+ apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
+ apply(metis Babs_def)
+ apply (simp add: in_respects)
+ using Quotient_rel[OF q]
+ by metis
+
+(* If a user proves that a particular functional relation
+ is an equivalence this may be useful in regularising *)
+lemma babs_reg_eqv:
+ shows "equivp R \<Longrightarrow> Babs (Respects R) P = P"
+ by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp)
+
+
+(* 3 lemmas needed for proving repabs_inj *)
+lemma ball_rsp:
+ assumes a: "(R ===> (op =)) f g"
+ shows "Ball (Respects R) f = Ball (Respects R) g"
+ using a by (simp add: Ball_def in_respects)
+
+lemma bex_rsp:
+ assumes a: "(R ===> (op =)) f g"
+ shows "(Bex (Respects R) f = Bex (Respects R) g)"
+ using a by (simp add: Bex_def in_respects)
+
+lemma bex1_rsp:
+ assumes a: "(R ===> (op =)) f g"
+ shows "Ex1 (\<lambda>x. x \<in> Respects R \<and> f x) = Ex1 (\<lambda>x. x \<in> Respects R \<and> g x)"
+ using a
+ by (simp add: Ex1_def in_respects) auto
+
+(* 2 lemmas needed for cleaning of quantifiers *)
+lemma all_prs:
+ assumes a: "Quotient R absf repf"
+ shows "Ball (Respects R) ((absf ---> id) f) = All f"
+ using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply
+ by metis
+
+lemma ex_prs:
+ assumes a: "Quotient R absf repf"
+ shows "Bex (Respects R) ((absf ---> id) f) = Ex f"
+ using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply
+ by metis
+
+section {* Bex1_rel quantifier *}
+
+definition
+ Bex1_rel :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
+where
+ "Bex1_rel R P \<longleftrightarrow> (\<exists>x \<in> Respects R. P x) \<and> (\<forall>x \<in> Respects R. \<forall>y \<in> Respects R. ((P x \<and> P y) \<longrightarrow> (R x y)))"
+
+lemma bex1_rel_aux:
+ "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R x\<rbrakk> \<Longrightarrow> Bex1_rel R y"
+ unfolding Bex1_rel_def
+ apply (erule conjE)+
+ apply (erule bexE)
+ apply rule
+ apply (rule_tac x="xa" in bexI)
+ apply metis
+ apply metis
+ apply rule+
+ apply (erule_tac x="xaa" in ballE)
+ prefer 2
+ apply (metis)
+ apply (erule_tac x="ya" in ballE)
+ prefer 2
+ apply (metis)
+ apply (metis in_respects)
+ done
+
+lemma bex1_rel_aux2:
+ "\<lbrakk>\<forall>xa ya. R xa ya \<longrightarrow> x xa = y ya; Bex1_rel R y\<rbrakk> \<Longrightarrow> Bex1_rel R x"
+ unfolding Bex1_rel_def
+ apply (erule conjE)+
+ apply (erule bexE)
+ apply rule
+ apply (rule_tac x="xa" in bexI)
+ apply metis
+ apply metis
+ apply rule+
+ apply (erule_tac x="xaa" in ballE)
+ prefer 2
+ apply (metis)
+ apply (erule_tac x="ya" in ballE)
+ prefer 2
+ apply (metis)
+ apply (metis in_respects)
+ done
+
+lemma bex1_rel_rsp:
+ assumes a: "Quotient R absf repf"
+ shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)"
+ apply simp
+ apply clarify
+ apply rule
+ apply (simp_all add: bex1_rel_aux bex1_rel_aux2)
+ apply (erule bex1_rel_aux2)
+ apply assumption
+ done
+
+
+lemma ex1_prs:
+ assumes a: "Quotient R absf repf"
+ shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f"
+apply simp
+apply (subst Bex1_rel_def)
+apply (subst Bex_def)
+apply (subst Ex1_def)
+apply simp
+apply rule
+ apply (erule conjE)+
+ apply (erule_tac exE)
+ apply (erule conjE)
+ apply (subgoal_tac "\<forall>y. R y y \<longrightarrow> f (absf y) \<longrightarrow> R x y")
+ apply (rule_tac x="absf x" in exI)
+ apply (simp)
+ apply rule+
+ using a unfolding Quotient_def
+ apply metis
+ apply rule+
+ apply (erule_tac x="x" in ballE)
+ apply (erule_tac x="y" in ballE)
+ apply simp
+ apply (simp add: in_respects)
+ apply (simp add: in_respects)
+apply (erule_tac exE)
+ apply rule
+ apply (rule_tac x="repf x" in exI)
+ apply (simp only: in_respects)
+ apply rule
+ apply (metis Quotient_rel_rep[OF a])
+using a unfolding Quotient_def apply (simp)
+apply rule+
+using a unfolding Quotient_def in_respects
+apply metis
+done
+
+lemma bex1_bexeq_reg: "(\<exists>!x\<in>Respects R. P x) \<longrightarrow> (Bex1_rel R (\<lambda>x. P x))"
+ apply (simp add: Ex1_def Bex1_rel_def in_respects)
+ apply clarify
+ apply auto
+ apply (rule bexI)
+ apply assumption
+ apply (simp add: in_respects)
+ apply (simp add: in_respects)
+ apply auto
+ done
+
+section {* Various respects and preserve lemmas *}
+
+lemma quot_rel_rsp:
+ assumes a: "Quotient R Abs Rep"
+ shows "(R ===> R ===> op =) R R"
+ apply(rule fun_rel_id)+
+ apply(rule equals_rsp[OF a])
+ apply(assumption)+
+ done
+
+lemma o_prs:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ and q3: "Quotient R3 Abs3 Rep3"
+ shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g"
+ using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
+ unfolding o_def expand_fun_eq by simp
+
+lemma o_rsp:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ and q3: "Quotient R3 Abs3 Rep3"
+ and a1: "(R2 ===> R3) f1 f2"
+ and a2: "(R1 ===> R2) g1 g2"
+ shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
+ using a1 a2 unfolding o_def expand_fun_eq
+ by (auto)
+
+lemma cond_prs:
+ assumes a: "Quotient R absf repf"
+ shows "absf (if a then repf b else repf c) = (if a then b else c)"
+ using a unfolding Quotient_def by auto
+
+lemma if_prs:
+ assumes q: "Quotient R Abs Rep"
+ shows "Abs (If a (Rep b) (Rep c)) = If a b c"
+ using Quotient_abs_rep[OF q] by auto
+
+(* q not used *)
+lemma if_rsp:
+ assumes q: "Quotient R Abs Rep"
+ and a: "a1 = a2" "R b1 b2" "R c1 c2"
+ shows "R (If a1 b1 c1) (If a2 b2 c2)"
+ using a by auto
+
+lemma let_prs:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f"
+ using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
+
+lemma let_rsp:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and a1: "(R1 ===> R2) f g"
+ and a2: "R1 x y"
+ shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
+ using apply_rsp[OF q1 a1] a2 by auto
+
+locale quot_type =
+ fixes R :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+ and Abs :: "('a \<Rightarrow> bool) \<Rightarrow> 'b"
+ and Rep :: "'b \<Rightarrow> ('a \<Rightarrow> bool)"
+ assumes equivp: "equivp R"
+ and rep_prop: "\<And>y. \<exists>x. Rep y = R x"
+ and rep_inverse: "\<And>x. Abs (Rep x) = x"
+ and abs_inverse: "\<And>x. (Rep (Abs (R x))) = (R x)"
+ and rep_inject: "\<And>x y. (Rep x = Rep y) = (x = y)"
+begin
+
+definition
+ abs::"'a \<Rightarrow> 'b"
+where
+ "abs x \<equiv> Abs (R x)"
+
+definition
+ rep::"'b \<Rightarrow> 'a"
+where
+ "rep a = Eps (Rep a)"
+
+lemma homeier_lem9:
+ shows "R (Eps (R x)) = R x"
+proof -
+ have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def)
+ then have "R x (Eps (R x))" by (rule someI)
+ then show "R (Eps (R x)) = R x"
+ using equivp unfolding equivp_def by simp
+qed
+
+theorem homeier_thm10:
+ shows "abs (rep a) = a"
+ unfolding abs_def rep_def
+proof -
+ from rep_prop
+ obtain x where eq: "Rep a = R x" by auto
+ have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp
+ also have "\<dots> = Abs (R x)" using homeier_lem9 by simp
+ also have "\<dots> = Abs (Rep a)" using eq by simp
+ also have "\<dots> = a" using rep_inverse by simp
+ finally
+ show "Abs (R (Eps (Rep a))) = a" by simp
+qed
+
+lemma homeier_lem7:
+ shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS")
+proof -
+ have "?RHS = (Rep (Abs (R x)) = Rep (Abs (R y)))" by (simp add: rep_inject)
+ also have "\<dots> = ?LHS" by (simp add: abs_inverse)
+ finally show "?LHS = ?RHS" by simp
+qed
+
+theorem homeier_thm11:
+ shows "R r r' = (abs r = abs r')"
+ unfolding abs_def
+ by (simp only: equivp[simplified equivp_def] homeier_lem7)
+
+lemma rep_refl:
+ shows "R (rep a) (rep a)"
+ unfolding rep_def
+ by (simp add: equivp[simplified equivp_def])
+
+
+lemma rep_abs_rsp:
+ shows "R f (rep (abs g)) = R f g"
+ and "R (rep (abs g)) f = R g f"
+ by (simp_all add: homeier_thm10 homeier_thm11)
+
+lemma Quotient:
+ shows "Quotient R abs rep"
+ unfolding Quotient_def
+ apply(simp add: homeier_thm10)
+ apply(simp add: rep_refl)
+ apply(subst homeier_thm11[symmetric])
+ apply(simp add: equivp[simplified equivp_def])
+ done
+
+end
+
+section {* ML setup *}
+
+text {* Auxiliary data for the quotient package *}
+
+use "quotient_info.ML"
+
+declare [[map "fun" = (fun_map, fun_rel)]]
+
+lemmas [quot_thm] = fun_quotient
+lemmas [quot_respect] = quot_rel_rsp
+lemmas [quot_equiv] = identity_equivp
+
+
+text {* Lemmas about simplifying id's. *}
+lemmas [id_simps] =
+ id_def[symmetric]
+ fun_map_id
+ id_apply
+ id_o
+ o_id
+ eq_comp_r
+
+text {* Translation functions for the lifting process. *}
+use "quotient_term.ML"
+
+
+text {* Definitions of the quotient types. *}
+use "quotient_typ.ML"
+
+
+text {* Definitions for quotient constants. *}
+use "quotient_def.ML"
+
+
+text {*
+ An auxiliary constant for recording some information
+ about the lifted theorem in a tactic.
+*}
+definition
+ "Quot_True x \<equiv> True"
+
+lemma
+ shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
+ and QT_ex: "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
+ and QT_ex1: "Quot_True (Ex1 P) \<Longrightarrow> Quot_True P"
+ and QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True (P x))"
+ and QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
+ by (simp_all add: Quot_True_def ext)
+
+lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
+ by (simp add: Quot_True_def)
+
+
+text {* Tactics for proving the lifted theorems *}
+use "quotient_tacs.ML"
+
+section {* Methods / Interface *}
+
+(* TODO inline *)
+ML {*
+fun mk_method1 tac thms ctxt =
+ SIMPLE_METHOD (HEADGOAL (tac ctxt thms))
+
+fun mk_method2 tac ctxt =
+ SIMPLE_METHOD (HEADGOAL (tac ctxt))
+*}
+
+method_setup lifting =
+ {* Attrib.thms >> (mk_method1 Quotient_Tacs.lift_tac) *}
+ {* lifts theorems to quotient types *}
+
+method_setup lifting_setup =
+ {* Attrib.thm >> (mk_method1 Quotient_Tacs.procedure_tac) *}
+ {* sets up the three goals for the quotient lifting procedure *}
+
+method_setup regularize =
+ {* Scan.succeed (mk_method2 Quotient_Tacs.regularize_tac) *}
+ {* proves the regularization goals from the quotient lifting procedure *}
+
+method_setup injection =
+ {* Scan.succeed (mk_method2 Quotient_Tacs.all_injection_tac) *}
+ {* proves the rep/abs injection goals from the quotient lifting procedure *}
+
+method_setup cleaning =
+ {* Scan.succeed (mk_method2 Quotient_Tacs.clean_tac) *}
+ {* proves the cleaning goals from the quotient lifting procedure *}
+
+attribute_setup quot_lifted =
+ {* Scan.succeed Quotient_Tacs.lifted_attrib *}
+ {* lifts theorems to quotient types *}
+
+end
+