diff -r 243a5ceaa088 -r 17ca92ab4660 Quot/Quotient.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Quot/Quotient.thy Thu Feb 11 10:06:02 2010 +0100 @@ -0,0 +1,802 @@ +(* Title: QuotMain.thy + Author: Cezary Kaliszyk and Christian Urban +*) + +theory Quotient +imports Plain ATP_Linkup +uses + ("quotient_info.ML") + ("quotient_typ.ML") + ("quotient_def.ML") + ("quotient_term.ML") + ("quotient_tacs.ML") +begin + +text {* + Basic definition for equivalence relations + that are represented by predicates. +*} + +definition + "equivp E \ (\x y. E x y = (E x = E y))" + +definition + "reflp E \ (\x. E x x)" + +definition + "symp E \ (\x y. E x y \ E y x)" + +definition + "transp E \ (\x y z. E x y \ E y z \ E x z)" + +lemma equivp_reflp_symp_transp: + shows "equivp E = (reflp E \ symp E \ transp E)" + unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq + by blast + +lemma equivp_reflp: + shows "equivp E \ E x x" + by (simp only: equivp_reflp_symp_transp reflp_def) + +lemma equivp_symp: + shows "equivp E \ E x y \ E y x" + by (metis equivp_reflp_symp_transp symp_def) + +lemma equivp_transp: + shows "equivp E \ E x y \ E y z \ E x z" + by (metis equivp_reflp_symp_transp transp_def) + +lemma equivpI: + assumes "reflp R" "symp R" "transp R" + shows "equivp R" + using assms by (simp add: equivp_reflp_symp_transp) + +lemma eq_imp_rel: + shows "equivp R \ a = b \ R a b" + by (simp add: equivp_reflp) + +lemma identity_equivp: + shows "equivp (op =)" + unfolding equivp_def + by auto + + +text {* Partial equivalences: not yet used anywhere *} +definition + "part_equivp E \ ((\x. E x x) \ (\x y. E x y = (E x x \ E y y \ (E x = E y))))" + +lemma equivp_implies_part_equivp: + assumes a: "equivp E" + shows "part_equivp E" + using a + unfolding equivp_def part_equivp_def + by auto + +text {* Composition of Relations *} + +abbreviation + rel_conj (infixr "OOO" 75) +where + "r1 OOO r2 \ r1 OO r2 OO r1" + +lemma eq_comp_r: + shows "((op =) OOO R) = R" + by (auto simp add: expand_fun_eq) + +section {* Respects predicate *} + +definition + Respects +where + "Respects R x \ (R x x)" + +lemma in_respects: + shows "(x \ Respects R) = R x x" + unfolding mem_def Respects_def + by simp + +section {* Function map and function relation *} + +definition + fun_map (infixr "--->" 55) +where +[simp]: "fun_map f g h x = g (h (f x))" + +definition + fun_rel (infixr "===>" 55) +where +[simp]: "fun_rel E1 E2 f g = (\x y. E1 x y \ E2 (f x) (g y))" + + +lemma fun_map_id: + shows "(id ---> id) = id" + by (simp add: expand_fun_eq id_def) + +lemma fun_rel_eq: + shows "((op =) ===> (op =)) = (op =)" + by (simp add: expand_fun_eq) + +lemma fun_rel_id: + assumes a: "\x y. R1 x y \ R2 (f x) (g y)" + shows "(R1 ===> R2) f g" + using a by simp + +lemma fun_rel_id_asm: + assumes a: "\x y. R1 x y \ (A \ R2 (f x) (g y))" + shows "A \ (R1 ===> R2) f g" + using a by auto + + +section {* Quotient Predicate *} + +definition + "Quotient E Abs Rep \ + (\a. Abs (Rep a) = a) \ (\a. E (Rep a) (Rep a)) \ + (\r s. E r s = (E r r \ E s s \ (Abs r = Abs s)))" + +lemma Quotient_abs_rep: + assumes a: "Quotient E Abs Rep" + shows "Abs (Rep a) = a" + using a + unfolding Quotient_def + by simp + +lemma Quotient_rep_reflp: + assumes a: "Quotient E Abs Rep" + shows "E (Rep a) (Rep a)" + using a + unfolding Quotient_def + by blast + +lemma Quotient_rel: + assumes a: "Quotient E Abs Rep" + shows " E r s = (E r r \ E s s \ (Abs r = Abs s))" + using a + unfolding Quotient_def + by blast + +lemma Quotient_rel_rep: + assumes a: "Quotient R Abs Rep" + shows "R (Rep a) (Rep b) = (a = b)" + using a + unfolding Quotient_def + by metis + +lemma Quotient_rep_abs: + assumes a: "Quotient R Abs Rep" + shows "R r r \ R (Rep (Abs r)) r" + using a unfolding Quotient_def + by blast + +lemma Quotient_rel_abs: + assumes a: "Quotient E Abs Rep" + shows "E r s \ Abs r = Abs s" + using a unfolding Quotient_def + by blast + +lemma Quotient_symp: + assumes a: "Quotient E Abs Rep" + shows "symp E" + using a unfolding Quotient_def symp_def + by metis + +lemma Quotient_transp: + assumes a: "Quotient E Abs Rep" + shows "transp E" + using a unfolding Quotient_def transp_def + by metis + +lemma identity_quotient: + shows "Quotient (op =) id id" + unfolding Quotient_def id_def + by blast + +lemma fun_quotient: + assumes q1: "Quotient R1 abs1 rep1" + and q2: "Quotient R2 abs2 rep2" + shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" +proof - + have "\a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" + using q1 q2 + unfolding Quotient_def + unfolding expand_fun_eq + by simp + moreover + have "\a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" + using q1 q2 + unfolding Quotient_def + by (simp (no_asm)) (metis) + moreover + have "\r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \ (R1 ===> R2) s s \ + (rep1 ---> abs2) r = (rep1 ---> abs2) s)" + unfolding expand_fun_eq + apply(auto) + using q1 q2 unfolding Quotient_def + apply(metis) + using q1 q2 unfolding Quotient_def + apply(metis) + using q1 q2 unfolding Quotient_def + apply(metis) + using q1 q2 unfolding Quotient_def + apply(metis) + done + ultimately + show "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" + unfolding Quotient_def by blast +qed + +lemma abs_o_rep: + assumes a: "Quotient R Abs Rep" + shows "Abs o Rep = id" + unfolding expand_fun_eq + by (simp add: Quotient_abs_rep[OF a]) + +lemma equals_rsp: + assumes q: "Quotient R Abs Rep" + and a: "R xa xb" "R ya yb" + shows "R xa ya = R xb yb" + using a Quotient_symp[OF q] Quotient_transp[OF q] + unfolding symp_def transp_def + by blast + +lemma lambda_prs: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "(Rep1 ---> Abs2) (\x. Rep2 (f (Abs1 x))) = (\x. f x)" + unfolding expand_fun_eq + using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] + by simp + +lemma lambda_prs1: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "(Rep1 ---> Abs2) (\x. (Abs1 ---> Rep2) f x) = (\x. f x)" + unfolding expand_fun_eq + using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] + by simp + +lemma rep_abs_rsp: + assumes q: "Quotient R Abs Rep" + and a: "R x1 x2" + shows "R x1 (Rep (Abs x2))" + using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q] + by metis + +lemma rep_abs_rsp_left: + assumes q: "Quotient R Abs Rep" + and a: "R x1 x2" + shows "R (Rep (Abs x1)) x2" + using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q] + by metis + +text{* + In the following theorem R1 can be instantiated with anything, + but we know some of the types of the Rep and Abs functions; + so by solving Quotient assumptions we can get a unique R1 that + will be provable; which is why we need to use apply_rsp and + not the primed version *} + +lemma apply_rsp: + fixes f g::"'a \ 'c" + assumes q: "Quotient R1 Abs1 Rep1" + and a: "(R1 ===> R2) f g" "R1 x y" + shows "R2 (f x) (g y)" + using a by simp + +lemma apply_rsp': + assumes a: "(R1 ===> R2) f g" "R1 x y" + shows "R2 (f x) (g y)" + using a by simp + +section {* lemmas for regularisation of ball and bex *} + +lemma ball_reg_eqv: + fixes P :: "'a \ bool" + assumes a: "equivp R" + shows "Ball (Respects R) P = (All P)" + using a + unfolding equivp_def + by (auto simp add: in_respects) + +lemma bex_reg_eqv: + fixes P :: "'a \ bool" + assumes a: "equivp R" + shows "Bex (Respects R) P = (Ex P)" + using a + unfolding equivp_def + by (auto simp add: in_respects) + +lemma ball_reg_right: + assumes a: "\x. R x \ P x \ Q x" + shows "All P \ Ball R Q" + using a by (metis COMBC_def Collect_def Collect_mem_eq) + +lemma bex_reg_left: + assumes a: "\x. R x \ Q x \ P x" + shows "Bex R Q \ Ex P" + using a by (metis COMBC_def Collect_def Collect_mem_eq) + +lemma ball_reg_left: + assumes a: "equivp R" + shows "(\x. (Q x \ P x)) \ Ball (Respects R) Q \ All P" + using a by (metis equivp_reflp in_respects) + +lemma bex_reg_right: + assumes a: "equivp R" + shows "(\x. (Q x \ P x)) \ Ex Q \ Bex (Respects R) P" + using a by (metis equivp_reflp in_respects) + +lemma ball_reg_eqv_range: + fixes P::"'a \ bool" + and x::"'a" + assumes a: "equivp R2" + shows "(Ball (Respects (R1 ===> R2)) (\f. P (f x)) = All (\f. P (f x)))" + apply(rule iffI) + apply(rule allI) + apply(drule_tac x="\y. f x" in bspec) + apply(simp add: in_respects) + apply(rule impI) + using a equivp_reflp_symp_transp[of "R2"] + apply(simp add: reflp_def) + apply(simp) + apply(simp) + done + +lemma bex_reg_eqv_range: + assumes a: "equivp R2" + shows "(Bex (Respects (R1 ===> R2)) (\f. P (f x)) = Ex (\f. P (f x)))" + apply(auto) + apply(rule_tac x="\y. f x" in bexI) + apply(simp) + apply(simp add: Respects_def in_respects) + apply(rule impI) + using a equivp_reflp_symp_transp[of "R2"] + apply(simp add: reflp_def) + done + +lemma all_reg: + assumes a: "!x :: 'a. (P x --> Q x)" + and b: "All P" + shows "All Q" + using a b by (metis) + +lemma ex_reg: + assumes a: "!x :: 'a. (P x --> Q x)" + and b: "Ex P" + shows "Ex Q" + using a b by metis + +lemma ball_reg: + assumes a: "!x :: 'a. (R x --> P x --> Q x)" + and b: "Ball R P" + shows "Ball R Q" + using a b by (metis COMBC_def Collect_def Collect_mem_eq) + +lemma bex_reg: + assumes a: "!x :: 'a. (R x --> P x --> Q x)" + and b: "Bex R P" + shows "Bex R Q" + using a b by (metis COMBC_def Collect_def Collect_mem_eq) + +lemma ball_all_comm: + assumes "\y. (\x\P. A x y) \ (\x. B x y)" + shows "(\x\P. \y. A x y) \ (\x. \y. B x y)" + using assms by auto + +lemma bex_ex_comm: + assumes "(\y. \x. A x y) \ (\y. \x\P. B x y)" + shows "(\x. \y. A x y) \ (\x\P. \y. B x y)" + using assms by auto + +section {* Bounded abstraction *} + +definition + Babs :: "('a \ bool) \ ('a \ 'b) \ 'a \ 'b" +where + "x \ p \ Babs p m x = m x" + +lemma babs_rsp: + assumes q: "Quotient R1 Abs1 Rep1" + and a: "(R1 ===> R2) f g" + shows "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)" + apply (auto simp add: Babs_def in_respects) + apply (subgoal_tac "x \ Respects R1 \ y \ Respects R1") + using a apply (simp add: Babs_def) + apply (simp add: in_respects) + using Quotient_rel[OF q] + by metis + +lemma babs_prs: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "((Rep1 ---> Abs2) (Babs (Respects R1) ((Abs1 ---> Rep2) f))) = f" + apply (rule ext) + apply (simp) + apply (subgoal_tac "Rep1 x \ Respects R1") + apply (simp add: Babs_def Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]) + apply (simp add: in_respects Quotient_rel_rep[OF q1]) + done + +lemma babs_simp: + assumes q: "Quotient R1 Abs Rep" + shows "((R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)) = ((R1 ===> R2) f g)" + apply(rule iffI) + apply(simp_all only: babs_rsp[OF q]) + apply(auto simp add: Babs_def) + apply (subgoal_tac "x \ Respects R1 \ y \ Respects R1") + apply(metis Babs_def) + apply (simp add: in_respects) + using Quotient_rel[OF q] + by metis + +(* If a user proves that a particular functional relation + is an equivalence this may be useful in regularising *) +lemma babs_reg_eqv: + shows "equivp R \ Babs (Respects R) P = P" + by (simp add: expand_fun_eq Babs_def in_respects equivp_reflp) + + +(* 3 lemmas needed for proving repabs_inj *) +lemma ball_rsp: + assumes a: "(R ===> (op =)) f g" + shows "Ball (Respects R) f = Ball (Respects R) g" + using a by (simp add: Ball_def in_respects) + +lemma bex_rsp: + assumes a: "(R ===> (op =)) f g" + shows "(Bex (Respects R) f = Bex (Respects R) g)" + using a by (simp add: Bex_def in_respects) + +lemma bex1_rsp: + assumes a: "(R ===> (op =)) f g" + shows "Ex1 (\x. x \ Respects R \ f x) = Ex1 (\x. x \ Respects R \ g x)" + using a + by (simp add: Ex1_def in_respects) auto + +(* 2 lemmas needed for cleaning of quantifiers *) +lemma all_prs: + assumes a: "Quotient R absf repf" + shows "Ball (Respects R) ((absf ---> id) f) = All f" + using a unfolding Quotient_def Ball_def in_respects fun_map_def id_apply + by metis + +lemma ex_prs: + assumes a: "Quotient R absf repf" + shows "Bex (Respects R) ((absf ---> id) f) = Ex f" + using a unfolding Quotient_def Bex_def in_respects fun_map_def id_apply + by metis + +section {* Bex1_rel quantifier *} + +definition + Bex1_rel :: "('a \ 'a \ bool) \ ('a \ bool) \ bool" +where + "Bex1_rel R P \ (\x \ Respects R. P x) \ (\x \ Respects R. \y \ Respects R. ((P x \ P y) \ (R x y)))" + +lemma bex1_rel_aux: + "\\xa ya. R xa ya \ x xa = y ya; Bex1_rel R x\ \ Bex1_rel R y" + unfolding Bex1_rel_def + apply (erule conjE)+ + apply (erule bexE) + apply rule + apply (rule_tac x="xa" in bexI) + apply metis + apply metis + apply rule+ + apply (erule_tac x="xaa" in ballE) + prefer 2 + apply (metis) + apply (erule_tac x="ya" in ballE) + prefer 2 + apply (metis) + apply (metis in_respects) + done + +lemma bex1_rel_aux2: + "\\xa ya. R xa ya \ x xa = y ya; Bex1_rel R y\ \ Bex1_rel R x" + unfolding Bex1_rel_def + apply (erule conjE)+ + apply (erule bexE) + apply rule + apply (rule_tac x="xa" in bexI) + apply metis + apply metis + apply rule+ + apply (erule_tac x="xaa" in ballE) + prefer 2 + apply (metis) + apply (erule_tac x="ya" in ballE) + prefer 2 + apply (metis) + apply (metis in_respects) + done + +lemma bex1_rel_rsp: + assumes a: "Quotient R absf repf" + shows "((R ===> op =) ===> op =) (Bex1_rel R) (Bex1_rel R)" + apply simp + apply clarify + apply rule + apply (simp_all add: bex1_rel_aux bex1_rel_aux2) + apply (erule bex1_rel_aux2) + apply assumption + done + + +lemma ex1_prs: + assumes a: "Quotient R absf repf" + shows "((absf ---> id) ---> id) (Bex1_rel R) f = Ex1 f" +apply simp +apply (subst Bex1_rel_def) +apply (subst Bex_def) +apply (subst Ex1_def) +apply simp +apply rule + apply (erule conjE)+ + apply (erule_tac exE) + apply (erule conjE) + apply (subgoal_tac "\y. R y y \ f (absf y) \ R x y") + apply (rule_tac x="absf x" in exI) + apply (simp) + apply rule+ + using a unfolding Quotient_def + apply metis + apply rule+ + apply (erule_tac x="x" in ballE) + apply (erule_tac x="y" in ballE) + apply simp + apply (simp add: in_respects) + apply (simp add: in_respects) +apply (erule_tac exE) + apply rule + apply (rule_tac x="repf x" in exI) + apply (simp only: in_respects) + apply rule + apply (metis Quotient_rel_rep[OF a]) +using a unfolding Quotient_def apply (simp) +apply rule+ +using a unfolding Quotient_def in_respects +apply metis +done + +lemma bex1_bexeq_reg: "(\!x\Respects R. P x) \ (Bex1_rel R (\x. P x))" + apply (simp add: Ex1_def Bex1_rel_def in_respects) + apply clarify + apply auto + apply (rule bexI) + apply assumption + apply (simp add: in_respects) + apply (simp add: in_respects) + apply auto + done + +section {* Various respects and preserve lemmas *} + +lemma quot_rel_rsp: + assumes a: "Quotient R Abs Rep" + shows "(R ===> R ===> op =) R R" + apply(rule fun_rel_id)+ + apply(rule equals_rsp[OF a]) + apply(assumption)+ + done + +lemma o_prs: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + and q3: "Quotient R3 Abs3 Rep3" + shows "(Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g)) = f o g" + using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3] + unfolding o_def expand_fun_eq by simp + +lemma o_rsp: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + and q3: "Quotient R3 Abs3 Rep3" + and a1: "(R2 ===> R3) f1 f2" + and a2: "(R1 ===> R2) g1 g2" + shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" + using a1 a2 unfolding o_def expand_fun_eq + by (auto) + +lemma cond_prs: + assumes a: "Quotient R absf repf" + shows "absf (if a then repf b else repf c) = (if a then b else c)" + using a unfolding Quotient_def by auto + +lemma if_prs: + assumes q: "Quotient R Abs Rep" + shows "Abs (If a (Rep b) (Rep c)) = If a b c" + using Quotient_abs_rep[OF q] by auto + +(* q not used *) +lemma if_rsp: + assumes q: "Quotient R Abs Rep" + and a: "a1 = a2" "R b1 b2" "R c1 c2" + shows "R (If a1 b1 c1) (If a2 b2 c2)" + using a by auto + +lemma let_prs: + assumes q1: "Quotient R1 Abs1 Rep1" + and q2: "Quotient R2 Abs2 Rep2" + shows "Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f)) = Let x f" + using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto + +lemma let_rsp: + assumes q1: "Quotient R1 Abs1 Rep1" + and a1: "(R1 ===> R2) f g" + and a2: "R1 x y" + shows "R2 ((Let x f)::'c) ((Let y g)::'c)" + using apply_rsp[OF q1 a1] a2 by auto + +locale quot_type = + fixes R :: "'a \ 'a \ bool" + and Abs :: "('a \ bool) \ 'b" + and Rep :: "'b \ ('a \ bool)" + assumes equivp: "equivp R" + and rep_prop: "\y. \x. Rep y = R x" + and rep_inverse: "\x. Abs (Rep x) = x" + and abs_inverse: "\x. (Rep (Abs (R x))) = (R x)" + and rep_inject: "\x y. (Rep x = Rep y) = (x = y)" +begin + +definition + abs::"'a \ 'b" +where + "abs x \ Abs (R x)" + +definition + rep::"'b \ 'a" +where + "rep a = Eps (Rep a)" + +lemma homeier_lem9: + shows "R (Eps (R x)) = R x" +proof - + have a: "R x x" using equivp by (simp add: equivp_reflp_symp_transp reflp_def) + then have "R x (Eps (R x))" by (rule someI) + then show "R (Eps (R x)) = R x" + using equivp unfolding equivp_def by simp +qed + +theorem homeier_thm10: + shows "abs (rep a) = a" + unfolding abs_def rep_def +proof - + from rep_prop + obtain x where eq: "Rep a = R x" by auto + have "Abs (R (Eps (Rep a))) = Abs (R (Eps (R x)))" using eq by simp + also have "\ = Abs (R x)" using homeier_lem9 by simp + also have "\ = Abs (Rep a)" using eq by simp + also have "\ = a" using rep_inverse by simp + finally + show "Abs (R (Eps (Rep a))) = a" by simp +qed + +lemma homeier_lem7: + shows "(R x = R y) = (Abs (R x) = Abs (R y))" (is "?LHS = ?RHS") +proof - + have "?RHS = (Rep (Abs (R x)) = Rep (Abs (R y)))" by (simp add: rep_inject) + also have "\ = ?LHS" by (simp add: abs_inverse) + finally show "?LHS = ?RHS" by simp +qed + +theorem homeier_thm11: + shows "R r r' = (abs r = abs r')" + unfolding abs_def + by (simp only: equivp[simplified equivp_def] homeier_lem7) + +lemma rep_refl: + shows "R (rep a) (rep a)" + unfolding rep_def + by (simp add: equivp[simplified equivp_def]) + + +lemma rep_abs_rsp: + shows "R f (rep (abs g)) = R f g" + and "R (rep (abs g)) f = R g f" + by (simp_all add: homeier_thm10 homeier_thm11) + +lemma Quotient: + shows "Quotient R abs rep" + unfolding Quotient_def + apply(simp add: homeier_thm10) + apply(simp add: rep_refl) + apply(subst homeier_thm11[symmetric]) + apply(simp add: equivp[simplified equivp_def]) + done + +end + +section {* ML setup *} + +text {* Auxiliary data for the quotient package *} + +use "quotient_info.ML" + +declare [[map "fun" = (fun_map, fun_rel)]] + +lemmas [quot_thm] = fun_quotient +lemmas [quot_respect] = quot_rel_rsp +lemmas [quot_equiv] = identity_equivp + + +text {* Lemmas about simplifying id's. *} +lemmas [id_simps] = + id_def[symmetric] + fun_map_id + id_apply + id_o + o_id + eq_comp_r + +text {* Translation functions for the lifting process. *} +use "quotient_term.ML" + + +text {* Definitions of the quotient types. *} +use "quotient_typ.ML" + + +text {* Definitions for quotient constants. *} +use "quotient_def.ML" + + +text {* + An auxiliary constant for recording some information + about the lifted theorem in a tactic. +*} +definition + "Quot_True x \ True" + +lemma + shows QT_all: "Quot_True (All P) \ Quot_True P" + and QT_ex: "Quot_True (Ex P) \ Quot_True P" + and QT_ex1: "Quot_True (Ex1 P) \ Quot_True P" + and QT_lam: "Quot_True (\x. P x) \ (\x. Quot_True (P x))" + and QT_ext: "(\x. Quot_True (a x) \ f x = g x) \ (Quot_True a \ f = g)" + by (simp_all add: Quot_True_def ext) + +lemma QT_imp: "Quot_True a \ Quot_True b" + by (simp add: Quot_True_def) + + +text {* Tactics for proving the lifted theorems *} +use "quotient_tacs.ML" + +section {* Methods / Interface *} + +(* TODO inline *) +ML {* +fun mk_method1 tac thms ctxt = + SIMPLE_METHOD (HEADGOAL (tac ctxt thms)) + +fun mk_method2 tac ctxt = + SIMPLE_METHOD (HEADGOAL (tac ctxt)) +*} + +method_setup lifting = + {* Attrib.thms >> (mk_method1 Quotient_Tacs.lift_tac) *} + {* lifts theorems to quotient types *} + +method_setup lifting_setup = + {* Attrib.thm >> (mk_method1 Quotient_Tacs.procedure_tac) *} + {* sets up the three goals for the quotient lifting procedure *} + +method_setup regularize = + {* Scan.succeed (mk_method2 Quotient_Tacs.regularize_tac) *} + {* proves the regularization goals from the quotient lifting procedure *} + +method_setup injection = + {* Scan.succeed (mk_method2 Quotient_Tacs.all_injection_tac) *} + {* proves the rep/abs injection goals from the quotient lifting procedure *} + +method_setup cleaning = + {* Scan.succeed (mk_method2 Quotient_Tacs.clean_tac) *} + {* proves the cleaning goals from the quotient lifting procedure *} + +attribute_setup quot_lifted = + {* Scan.succeed Quotient_Tacs.lifted_attrib *} + {* lifts theorems to quotient types *} + +end +