FSet.thy
changeset 430 123877af04ed
parent 423 2f0ad33f0241
child 433 1c245f6911dd
child 434 3359033eff79
--- a/FSet.thy	Sat Nov 28 04:37:30 2009 +0100
+++ b/FSet.thy	Sat Nov 28 04:46:03 2009 +0100
@@ -322,7 +322,7 @@
 
 lemma "CARD x = Suc n \<Longrightarrow> (\<exists>a b. \<not> IN a b & x = INSERT a b)"
 apply (tactic {* lift_tac_fset @{context} @{thm card1_suc} 1 *})
-done
+oops
 
 lemma "(\<not> IN x xa) = (CARD (INSERT x xa) = Suc (CARD xa))"
 apply (tactic {* lift_tac_fset @{context} @{thm not_mem_card1} 1 *})
@@ -347,7 +347,7 @@
 
 lemma "\<lbrakk>P EMPTY; \<And>a x. P x \<Longrightarrow> P (INSERT a x)\<rbrakk> \<Longrightarrow> P l"
 apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *})
-apply(tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *})
+apply(tactic {* regularize_tac @{context} rel_eqv [rel_refl] 1 *})
 prefer 2
 apply(rule cheat)
 apply(tactic {* r_mk_comb_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *)
@@ -449,7 +449,7 @@
 (* Construction site starts here *)
 lemma "P (x :: 'a list) (EMPTY :: 'c fset) \<Longrightarrow> (\<And>e t. P x t \<Longrightarrow> P x (INSERT e t)) \<Longrightarrow> P x l"
 apply (tactic {* procedure_tac @{context} @{thm list_induct_part} 1 *})
-apply (tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *})
+apply (tactic {* regularize_tac @{context} rel_eqv [rel_refl] 1 *})
 apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *})
 apply (rule FUN_QUOTIENT)
 apply (rule FUN_QUOTIENT)