diff -r cd6ce3322b8f -r 123877af04ed FSet.thy --- a/FSet.thy Sat Nov 28 04:37:30 2009 +0100 +++ b/FSet.thy Sat Nov 28 04:46:03 2009 +0100 @@ -322,7 +322,7 @@ lemma "CARD x = Suc n \ (\a b. \ IN a b & x = INSERT a b)" apply (tactic {* lift_tac_fset @{context} @{thm card1_suc} 1 *}) -done +oops lemma "(\ IN x xa) = (CARD (INSERT x xa) = Suc (CARD xa))" apply (tactic {* lift_tac_fset @{context} @{thm not_mem_card1} 1 *}) @@ -347,7 +347,7 @@ lemma "\P EMPTY; \a x. P x \ P (INSERT a x)\ \ P l" apply(tactic {* procedure_tac @{context} @{thm list.induct} 1 *}) -apply(tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *}) +apply(tactic {* regularize_tac @{context} rel_eqv [rel_refl] 1 *}) prefer 2 apply(rule cheat) apply(tactic {* r_mk_comb_tac_fset @{context} 1*}) (* 3 *) (* Ball-Ball *) @@ -449,7 +449,7 @@ (* Construction site starts here *) lemma "P (x :: 'a list) (EMPTY :: 'c fset) \ (\e t. P x t \ P x (INSERT e t)) \ P x l" apply (tactic {* procedure_tac @{context} @{thm list_induct_part} 1 *}) -apply (tactic {* regularize_tac @{context} [rel_eqv] [rel_refl] 1 *}) +apply (tactic {* regularize_tac @{context} rel_eqv [rel_refl] 1 *}) apply (tactic {* (APPLY_RSP_TAC rty @{context}) 1 *}) apply (rule FUN_QUOTIENT) apply (rule FUN_QUOTIENT)