--- a/Nominal/Nominal2_Base.thy Fri May 16 08:38:23 2014 +0100
+++ b/Nominal/Nominal2_Base.thy Mon May 19 11:19:48 2014 +0100
@@ -2167,7 +2167,8 @@
proof -
have "(\<Union>{supp x | x. x \<in># M}) = (\<Union>{supp x | x. x \<in> set_of M})" by simp
also have "... \<subseteq> (\<Union>x \<in> set_of M. supp x)" by auto
- also have "... = supp (set_of M)" by (simp add: supp_of_finite_sets)
+ also have "... = supp (set_of M)"
+ by (simp add: supp_of_finite_sets)
also have " ... \<subseteq> supp M" by (rule supp_set_of)
finally show "(\<Union>{supp x | x. x \<in># M}) \<subseteq> supp M" .
qed
@@ -2953,7 +2954,6 @@
simproc_setup fresh_ineq ("x \<noteq> (y::'a::at_base)") = {* fn _ => fn ctxt => fn ctrm =>
case term_of ctrm of @{term "HOL.Not"} $ (Const (@{const_name HOL.eq}, _) $ lhs $ rhs) =>
let
-
fun first_is_neg lhs rhs [] = NONE
| first_is_neg lhs rhs (thm::thms) =
(case Thm.prop_of thm of
@@ -2976,8 +2976,6 @@
|> map (simplify (put_simpset HOL_basic_ss ctxt addsimps simp_thms))
|> map HOLogic.conj_elims
|> flat
-
-
in
case first_is_neg lhs rhs prems of
SOME(thm) => SOME(thm RS @{thm Eq_TrueI})