diff -r 9ae285ce814e -r 08c3ef07cef7 Nominal/Nominal2_Base.thy --- a/Nominal/Nominal2_Base.thy Fri May 16 08:38:23 2014 +0100 +++ b/Nominal/Nominal2_Base.thy Mon May 19 11:19:48 2014 +0100 @@ -2167,7 +2167,8 @@ proof - have "(\{supp x | x. x \# M}) = (\{supp x | x. x \ set_of M})" by simp also have "... \ (\x \ set_of M. supp x)" by auto - also have "... = supp (set_of M)" by (simp add: supp_of_finite_sets) + also have "... = supp (set_of M)" + by (simp add: supp_of_finite_sets) also have " ... \ supp M" by (rule supp_set_of) finally show "(\{supp x | x. x \# M}) \ supp M" . qed @@ -2953,7 +2954,6 @@ simproc_setup fresh_ineq ("x \ (y::'a::at_base)") = {* fn _ => fn ctxt => fn ctrm => case term_of ctrm of @{term "HOL.Not"} $ (Const (@{const_name HOL.eq}, _) $ lhs $ rhs) => let - fun first_is_neg lhs rhs [] = NONE | first_is_neg lhs rhs (thm::thms) = (case Thm.prop_of thm of @@ -2976,8 +2976,6 @@ |> map (simplify (put_simpset HOL_basic_ss ctxt addsimps simp_thms)) |> map HOLogic.conj_elims |> flat - - in case first_is_neg lhs rhs prems of SOME(thm) => SOME(thm RS @{thm Eq_TrueI})