--- a/Nominal/nominal_dt_quot.ML Mon Dec 06 16:35:42 2010 +0000
+++ b/Nominal/nominal_dt_quot.ML Mon Dec 06 17:11:34 2010 +0000
@@ -2,7 +2,8 @@
Author: Christian Urban
Author: Cezary Kaliszyk
- Performing quotient constructions and lifting theorems
+ Performing quotient constructions, lifting theorems and
+ deriving support propoerties for the quotient types.
*)
signature NOMINAL_DT_QUOT =
@@ -21,6 +22,20 @@
val lift_thms: typ list -> thm list -> thm list -> Proof.context -> thm list * Proof.context
+ val prove_supports: Proof.context -> thm list -> term list -> thm list
+ val prove_fsupp: Proof.context -> typ list -> thm -> thm list -> thm list
+
+ val fs_instance: typ list -> string list -> (string * sort) list -> thm list ->
+ local_theory -> local_theory
+
+ val prove_fv_supp: typ list -> term list -> term list -> term list -> term list -> thm list ->
+ thm list -> thm list -> thm list -> thm -> bclause list list -> Proof.context -> thm list
+
+ val prove_bns_finite: typ list -> term list -> thm -> thm list -> Proof.context -> thm list
+
+ val prove_perm_bn_alpha_thms: typ list -> term list -> term list -> thm -> thm list -> thm list ->
+ thm list -> Proof.context -> thm list
+
end
structure Nominal_Dt_Quot: NOMINAL_DT_QUOT =
@@ -128,5 +143,208 @@
#> unraw_vars_thm
#> Drule.zero_var_indexes) thms, ctxt)
+
+
+fun mk_supports_goal ctxt qtrm =
+ let
+ val vs = fresh_args ctxt qtrm
+ val rhs = list_comb (qtrm, vs)
+ val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"}
+ |> mk_supp
+ in
+ mk_supports lhs rhs
+ |> HOLogic.mk_Trueprop
+ end
+
+fun supports_tac ctxt perm_simps =
+ let
+ val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]}
+ val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair}
+ in
+ EVERY' [ simp_tac ss1,
+ Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [],
+ simp_tac ss2 ]
+ end
+
+fun prove_supports_single ctxt perm_simps qtrm =
+ let
+ val goal = mk_supports_goal ctxt qtrm
+ val ctxt' = Variable.auto_fixes goal ctxt
+ in
+ Goal.prove ctxt' [] [] goal
+ (K (HEADGOAL (supports_tac ctxt perm_simps)))
+ |> singleton (ProofContext.export ctxt' ctxt)
+ end
+
+fun prove_supports ctxt perm_simps qtrms =
+ map (prove_supports_single ctxt perm_simps) qtrms
+
+
+(* finite supp lemmas for qtypes *)
+
+fun prove_fsupp ctxt qtys qinduct qsupports_thms =
+ let
+ val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt
+ val goals = vs ~~ qtys
+ |> map Free
+ |> map (mk_finite o mk_supp)
+ |> foldr1 (HOLogic.mk_conj)
+ |> HOLogic.mk_Trueprop
+
+ val tac =
+ EVERY' [ rtac @{thm supports_finite},
+ resolve_tac qsupports_thms,
+ asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ]
+ in
+ Goal.prove ctxt' [] [] goals
+ (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac)))
+ |> singleton (ProofContext.export ctxt' ctxt)
+ |> Datatype_Aux.split_conj_thm
+ |> map zero_var_indexes
+ end
+
+
+(* finite supp instances *)
+
+fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy =
+ let
+ val lthy1 =
+ lthy
+ |> Local_Theory.exit_global
+ |> Class.instantiation (qfull_ty_names, tvs, @{sort fs})
+
+ fun tac _ =
+ Class.intro_classes_tac [] THEN
+ (ALLGOALS (resolve_tac qfsupp_thms))
+ in
+ lthy1
+ |> Class.prove_instantiation_exit tac
+ |> Named_Target.theory_init
+ end
+
+
+(* proves that fv and fv_bn equals supp *)
+
+fun gen_mk_goals fv supp =
+ let
+ val arg_ty =
+ fastype_of fv
+ |> domain_type
+ in
+ (arg_ty, fn x => HOLogic.mk_eq (fv $ x, supp x))
+ end
+
+fun mk_fvs_goals fv = gen_mk_goals fv mk_supp
+fun mk_fv_bns_goals fv_bn alpha_bn = gen_mk_goals fv_bn (mk_supp_rel alpha_bn)
+
+fun add_ss thms =
+ HOL_basic_ss addsimps thms
+
+fun symmetric thms =
+ map (fn thm => thm RS @{thm sym}) thms
+
+val supp_Abs_set = @{thms supp_Abs(1)[symmetric]}
+val supp_Abs_res = @{thms supp_Abs(2)[symmetric]}
+val supp_Abs_lst = @{thms supp_Abs(3)[symmetric]}
+
+fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_set
+ | mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_res
+ | mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_lst
+
+fun mk_supp_abs_tac ctxt [] = []
+ | mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs
+ | mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs
+
+fun mk_bn_supp_abs_tac trm =
+ trm
+ |> fastype_of
+ |> body_type
+ |> (fn ty => case ty of
+ @{typ "atom set"} => simp_tac (add_ss supp_Abs_set)
+ | @{typ "atom list"} => simp_tac (add_ss supp_Abs_lst)
+ | _ => raise TERM ("mk_bn_supp_abs_tac", [trm]))
+
+
+val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc}
+val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un}
+val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel_def permute_prod_def
+ prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] finite.emptyI}
+
+fun prove_fv_supp qtys qtrms fvs fv_bns alpha_bns fv_simps eq_iffs perm_simps
+ fv_bn_eqvts qinduct bclausess ctxt =
+ let
+ val goals1 = map mk_fvs_goals fvs
+ val goals2 = map2 mk_fv_bns_goals fv_bns alpha_bns
+
+ fun tac ctxt =
+ SUBGOAL (fn (goal, i) =>
+ let
+ val (fv_fun, arg) =
+ goal |> Envir.eta_contract
+ |> Logic.strip_assums_concl
+ |> HOLogic.dest_Trueprop
+ |> fst o HOLogic.dest_eq
+ |> dest_comb
+ val supp_abs_tac =
+ case (AList.lookup (op=) (qtrms ~~ bclausess) (head_of arg)) of
+ SOME bclauses => EVERY' (mk_supp_abs_tac ctxt bclauses)
+ | NONE => mk_bn_supp_abs_tac fv_fun
+ in
+ EVERY' [ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)),
+ TRY o supp_abs_tac,
+ TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}),
+ TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [],
+ TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)),
+ TRY o asm_full_simp_tac (add_ss thms3),
+ TRY o simp_tac (add_ss thms2),
+ TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts)))] i
+ end)
+ in
+ induct_prove qtys (goals1 @ goals2) qinduct tac ctxt
+ |> map atomize
+ |> map (simplify (HOL_basic_ss addsimps @{thms fun_eq_iff[symmetric]}))
+ end
+
+
+fun prove_bns_finite qtys qbns qinduct qbn_simps ctxt =
+ let
+ fun mk_goal qbn =
+ let
+ val arg_ty = domain_type (fastype_of qbn)
+ val finite = @{term "finite :: atom set => bool"}
+ in
+ (arg_ty, fn x => finite $ (to_set (qbn $ x)))
+ end
+
+ val props = map mk_goal qbns
+ val ss_tac = asm_full_simp_tac (HOL_basic_ss addsimps (qbn_simps @
+ @{thms set.simps set_append finite_insert finite.emptyI finite_Un}))
+ in
+ induct_prove qtys props qinduct (K ss_tac) ctxt
+ end
+
+fun prove_perm_bn_alpha_thms qtys qperm_bns alpha_bns qinduct qperm_bn_simps qeq_iffs qalpha_refls ctxt =
+ let
+ val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt
+ val p = Free (p, @{typ perm})
+
+ fun mk_goal qperm_bn alpha_bn =
+ let
+ val arg_ty = domain_type (fastype_of alpha_bn)
+ in
+ (arg_ty, fn x => (mk_id (Abs ("", arg_ty, alpha_bn $ Bound 0 $ (qperm_bn $ p $ Bound 0)))) $ x)
+ end
+
+ val props = map2 mk_goal qperm_bns alpha_bns
+ val ss = @{thm id_def}::qperm_bn_simps @ qeq_iffs @ qalpha_refls
+ val ss_tac = asm_full_simp_tac (HOL_ss addsimps ss)
+ in
+ induct_prove qtys props qinduct (K ss_tac) ctxt'
+ |> ProofContext.export ctxt' ctxt
+ |> map (simplify (HOL_basic_ss addsimps @{thms id_def}))
+ end
+
+
+
end (* structure *)