diff -r 515e5496171c -r 07f775729e90 Nominal/nominal_dt_quot.ML --- a/Nominal/nominal_dt_quot.ML Mon Dec 06 16:35:42 2010 +0000 +++ b/Nominal/nominal_dt_quot.ML Mon Dec 06 17:11:34 2010 +0000 @@ -2,7 +2,8 @@ Author: Christian Urban Author: Cezary Kaliszyk - Performing quotient constructions and lifting theorems + Performing quotient constructions, lifting theorems and + deriving support propoerties for the quotient types. *) signature NOMINAL_DT_QUOT = @@ -21,6 +22,20 @@ val lift_thms: typ list -> thm list -> thm list -> Proof.context -> thm list * Proof.context + val prove_supports: Proof.context -> thm list -> term list -> thm list + val prove_fsupp: Proof.context -> typ list -> thm -> thm list -> thm list + + val fs_instance: typ list -> string list -> (string * sort) list -> thm list -> + local_theory -> local_theory + + val prove_fv_supp: typ list -> term list -> term list -> term list -> term list -> thm list -> + thm list -> thm list -> thm list -> thm -> bclause list list -> Proof.context -> thm list + + val prove_bns_finite: typ list -> term list -> thm -> thm list -> Proof.context -> thm list + + val prove_perm_bn_alpha_thms: typ list -> term list -> term list -> thm -> thm list -> thm list -> + thm list -> Proof.context -> thm list + end structure Nominal_Dt_Quot: NOMINAL_DT_QUOT = @@ -128,5 +143,208 @@ #> unraw_vars_thm #> Drule.zero_var_indexes) thms, ctxt) + + +fun mk_supports_goal ctxt qtrm = + let + val vs = fresh_args ctxt qtrm + val rhs = list_comb (qtrm, vs) + val lhs = fold (curry HOLogic.mk_prod) vs @{term "()"} + |> mk_supp + in + mk_supports lhs rhs + |> HOLogic.mk_Trueprop + end + +fun supports_tac ctxt perm_simps = + let + val ss1 = HOL_basic_ss addsimps @{thms supports_def fresh_def[symmetric]} + val ss2 = HOL_ss addsimps @{thms swap_fresh_fresh fresh_Pair} + in + EVERY' [ simp_tac ss1, + Nominal_Permeq.eqvt_strict_tac ctxt perm_simps [], + simp_tac ss2 ] + end + +fun prove_supports_single ctxt perm_simps qtrm = + let + val goal = mk_supports_goal ctxt qtrm + val ctxt' = Variable.auto_fixes goal ctxt + in + Goal.prove ctxt' [] [] goal + (K (HEADGOAL (supports_tac ctxt perm_simps))) + |> singleton (ProofContext.export ctxt' ctxt) + end + +fun prove_supports ctxt perm_simps qtrms = + map (prove_supports_single ctxt perm_simps) qtrms + + +(* finite supp lemmas for qtypes *) + +fun prove_fsupp ctxt qtys qinduct qsupports_thms = + let + val (vs, ctxt') = Variable.variant_fixes (replicate (length qtys) "x") ctxt + val goals = vs ~~ qtys + |> map Free + |> map (mk_finite o mk_supp) + |> foldr1 (HOLogic.mk_conj) + |> HOLogic.mk_Trueprop + + val tac = + EVERY' [ rtac @{thm supports_finite}, + resolve_tac qsupports_thms, + asm_simp_tac (HOL_ss addsimps @{thms finite_supp supp_Pair finite_Un}) ] + in + Goal.prove ctxt' [] [] goals + (K (HEADGOAL (rtac qinduct THEN_ALL_NEW tac))) + |> singleton (ProofContext.export ctxt' ctxt) + |> Datatype_Aux.split_conj_thm + |> map zero_var_indexes + end + + +(* finite supp instances *) + +fun fs_instance qtys qfull_ty_names tvs qfsupp_thms lthy = + let + val lthy1 = + lthy + |> Local_Theory.exit_global + |> Class.instantiation (qfull_ty_names, tvs, @{sort fs}) + + fun tac _ = + Class.intro_classes_tac [] THEN + (ALLGOALS (resolve_tac qfsupp_thms)) + in + lthy1 + |> Class.prove_instantiation_exit tac + |> Named_Target.theory_init + end + + +(* proves that fv and fv_bn equals supp *) + +fun gen_mk_goals fv supp = + let + val arg_ty = + fastype_of fv + |> domain_type + in + (arg_ty, fn x => HOLogic.mk_eq (fv $ x, supp x)) + end + +fun mk_fvs_goals fv = gen_mk_goals fv mk_supp +fun mk_fv_bns_goals fv_bn alpha_bn = gen_mk_goals fv_bn (mk_supp_rel alpha_bn) + +fun add_ss thms = + HOL_basic_ss addsimps thms + +fun symmetric thms = + map (fn thm => thm RS @{thm sym}) thms + +val supp_Abs_set = @{thms supp_Abs(1)[symmetric]} +val supp_Abs_res = @{thms supp_Abs(2)[symmetric]} +val supp_Abs_lst = @{thms supp_Abs(3)[symmetric]} + +fun mk_supp_abs ctxt (BC (Set, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_set + | mk_supp_abs ctxt (BC (Res, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_res + | mk_supp_abs ctxt (BC (Lst, _, _)) = EqSubst.eqsubst_tac ctxt [1] supp_Abs_lst + +fun mk_supp_abs_tac ctxt [] = [] + | mk_supp_abs_tac ctxt (BC (_, [], _)::xs) = mk_supp_abs_tac ctxt xs + | mk_supp_abs_tac ctxt (bc::xs) = (DETERM o mk_supp_abs ctxt bc)::mk_supp_abs_tac ctxt xs + +fun mk_bn_supp_abs_tac trm = + trm + |> fastype_of + |> body_type + |> (fn ty => case ty of + @{typ "atom set"} => simp_tac (add_ss supp_Abs_set) + | @{typ "atom list"} => simp_tac (add_ss supp_Abs_lst) + | _ => raise TERM ("mk_bn_supp_abs_tac", [trm])) + + +val thms1 = @{thms supp_Pair supp_eqvt[symmetric] Un_assoc conj_assoc} +val thms2 = @{thms de_Morgan_conj Collect_disj_eq finite_Un} +val thms3 = @{thms alphas prod_alpha_def prod_fv.simps prod_rel_def permute_prod_def + prod.recs prod.cases prod.inject not_True_eq_False empty_def[symmetric] finite.emptyI} + +fun prove_fv_supp qtys qtrms fvs fv_bns alpha_bns fv_simps eq_iffs perm_simps + fv_bn_eqvts qinduct bclausess ctxt = + let + val goals1 = map mk_fvs_goals fvs + val goals2 = map2 mk_fv_bns_goals fv_bns alpha_bns + + fun tac ctxt = + SUBGOAL (fn (goal, i) => + let + val (fv_fun, arg) = + goal |> Envir.eta_contract + |> Logic.strip_assums_concl + |> HOLogic.dest_Trueprop + |> fst o HOLogic.dest_eq + |> dest_comb + val supp_abs_tac = + case (AList.lookup (op=) (qtrms ~~ bclausess) (head_of arg)) of + SOME bclauses => EVERY' (mk_supp_abs_tac ctxt bclauses) + | NONE => mk_bn_supp_abs_tac fv_fun + in + EVERY' [ TRY o asm_full_simp_tac (add_ss (@{thm supp_Pair[symmetric]}::fv_simps)), + TRY o supp_abs_tac, + TRY o simp_tac (add_ss @{thms supp_def supp_rel_def}), + TRY o Nominal_Permeq.eqvt_tac ctxt (perm_simps @ fv_bn_eqvts) [], + TRY o simp_tac (add_ss (@{thms Abs_eq_iff} @ eq_iffs)), + TRY o asm_full_simp_tac (add_ss thms3), + TRY o simp_tac (add_ss thms2), + TRY o asm_full_simp_tac (add_ss (thms1 @ (symmetric fv_bn_eqvts)))] i + end) + in + induct_prove qtys (goals1 @ goals2) qinduct tac ctxt + |> map atomize + |> map (simplify (HOL_basic_ss addsimps @{thms fun_eq_iff[symmetric]})) + end + + +fun prove_bns_finite qtys qbns qinduct qbn_simps ctxt = + let + fun mk_goal qbn = + let + val arg_ty = domain_type (fastype_of qbn) + val finite = @{term "finite :: atom set => bool"} + in + (arg_ty, fn x => finite $ (to_set (qbn $ x))) + end + + val props = map mk_goal qbns + val ss_tac = asm_full_simp_tac (HOL_basic_ss addsimps (qbn_simps @ + @{thms set.simps set_append finite_insert finite.emptyI finite_Un})) + in + induct_prove qtys props qinduct (K ss_tac) ctxt + end + +fun prove_perm_bn_alpha_thms qtys qperm_bns alpha_bns qinduct qperm_bn_simps qeq_iffs qalpha_refls ctxt = + let + val ([p], ctxt') = Variable.variant_fixes ["p"] ctxt + val p = Free (p, @{typ perm}) + + fun mk_goal qperm_bn alpha_bn = + let + val arg_ty = domain_type (fastype_of alpha_bn) + in + (arg_ty, fn x => (mk_id (Abs ("", arg_ty, alpha_bn $ Bound 0 $ (qperm_bn $ p $ Bound 0)))) $ x) + end + + val props = map2 mk_goal qperm_bns alpha_bns + val ss = @{thm id_def}::qperm_bn_simps @ qeq_iffs @ qalpha_refls + val ss_tac = asm_full_simp_tac (HOL_ss addsimps ss) + in + induct_prove qtys props qinduct (K ss_tac) ctxt' + |> ProofContext.export ctxt' ctxt + |> map (simplify (HOL_basic_ss addsimps @{thms id_def})) + end + + + end (* structure *)