|
1 theory QuotScript |
|
2 imports Main |
|
3 begin |
|
4 |
|
5 definition |
|
6 "EQUIV E \<equiv> \<forall>x y. E x y = (E x = E y)" |
|
7 |
|
8 definition |
|
9 "REFL E \<equiv> \<forall>x. E x x" |
|
10 |
|
11 definition |
|
12 "SYM E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x" |
|
13 |
|
14 definition |
|
15 "TRANS E \<equiv> \<forall>x y z. E x y \<and> E y z \<longrightarrow> E x z" |
|
16 |
|
17 lemma EQUIV_REFL_SYM_TRANS: |
|
18 shows "EQUIV E = (REFL E \<and> SYM E \<and> TRANS E)" |
|
19 unfolding EQUIV_def REFL_def SYM_def TRANS_def expand_fun_eq |
|
20 by (blast) |
|
21 |
|
22 definition |
|
23 "PART_EQUIV E \<equiv> (\<exists>x. E x x) \<and> (\<forall>x y. E x y = (E x x \<and> E y y \<and> (E x = E y)))" |
|
24 |
|
25 lemma EQUIV_IMP_PART_EQUIV: |
|
26 assumes a: "EQUIV E" |
|
27 shows "PART_EQUIV E" |
|
28 using a unfolding EQUIV_def PART_EQUIV_def |
|
29 by auto |
|
30 |
|
31 definition |
|
32 "QUOTIENT E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and> |
|
33 (\<forall>a. E (Rep a) (Rep a)) \<and> |
|
34 (\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))" |
|
35 |
|
36 lemma QUOTIENT_ABS_REP: |
|
37 assumes a: "QUOTIENT E Abs Rep" |
|
38 shows "Abs (Rep a) = a" |
|
39 using a unfolding QUOTIENT_def |
|
40 by simp |
|
41 |
|
42 lemma QUOTIENT_REP_REFL: |
|
43 assumes a: "QUOTIENT E Abs Rep" |
|
44 shows "E (Rep a) (Rep a)" |
|
45 using a unfolding QUOTIENT_def |
|
46 by blast |
|
47 |
|
48 lemma QUOTIENT_REL: |
|
49 assumes a: "QUOTIENT E Abs Rep" |
|
50 shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))" |
|
51 using a unfolding QUOTIENT_def |
|
52 by blast |
|
53 |
|
54 lemma QUOTIENT_REL_ABS: |
|
55 assumes a: "QUOTIENT E Abs Rep" |
|
56 shows "E r s \<Longrightarrow> Abs r = Abs s" |
|
57 using a unfolding QUOTIENT_def |
|
58 by blast |
|
59 |
|
60 lemma QUOTIENT_REL_ABS_EQ: |
|
61 assumes a: "QUOTIENT E Abs Rep" |
|
62 shows "E r r \<Longrightarrow> E s s \<Longrightarrow> E r s = (Abs r = Abs s)" |
|
63 using a unfolding QUOTIENT_def |
|
64 by blast |
|
65 |
|
66 lemma QUOTIENT_REL_REP: |
|
67 assumes a: "QUOTIENT E Abs Rep" |
|
68 shows "E (Rep a) (Rep b) = (a = b)" |
|
69 using a unfolding QUOTIENT_def |
|
70 by metis |
|
71 |
|
72 lemma QUOTIENT_REP_ABS: |
|
73 assumes a: "QUOTIENT E Abs Rep" |
|
74 shows "E r r \<Longrightarrow> E (Rep (Abs r)) r" |
|
75 using a unfolding QUOTIENT_def |
|
76 by blast |
|
77 |
|
78 lemma IDENTITY_EQUIV: |
|
79 shows "EQUIV (op =)" |
|
80 unfolding EQUIV_def |
|
81 by auto |
|
82 |
|
83 lemma IDENTITY_QUOTIENT: |
|
84 shows "QUOTIENT (op =) (\<lambda>x. x) (\<lambda>x. x)" |
|
85 unfolding QUOTIENT_def |
|
86 by blast |
|
87 |
|
88 lemma QUOTIENT_SYM: |
|
89 assumes a: "QUOTIENT E Abs Rep" |
|
90 shows "SYM E" |
|
91 using a unfolding QUOTIENT_def SYM_def |
|
92 by metis |
|
93 |
|
94 lemma QUOTIENT_TRANS: |
|
95 assumes a: "QUOTIENT E Abs Rep" |
|
96 shows "TRANS E" |
|
97 using a unfolding QUOTIENT_def TRANS_def |
|
98 by metis |
|
99 |
|
100 fun |
|
101 fun_map |
|
102 where |
|
103 "fun_map f g h x = g (h (f x))" |
|
104 |
|
105 abbreviation |
|
106 fun_map_syn ("_ ---> _") |
|
107 where |
|
108 "f ---> g \<equiv> fun_map f g" |
|
109 |
|
110 lemma FUN_MAP_I: |
|
111 shows "(\<lambda>x. x ---> \<lambda>x. x) = (\<lambda>x. x)" |
|
112 by (simp add: expand_fun_eq) |
|
113 |
|
114 lemma IN_FUN: |
|
115 shows "x \<in> ((f ---> g) s) = g (f x \<in> s)" |
|
116 by (simp add: mem_def) |
|
117 |
|
118 fun |
|
119 FUN_REL |
|
120 where |
|
121 "FUN_REL E1 E2 f g = (\<forall>x y. E1 x y \<longrightarrow> E2 (f x) (g y))" |
|
122 |
|
123 abbreviation |
|
124 FUN_REL_syn ("_ ===> _") |
|
125 where |
|
126 "E1 ===> E2 \<equiv> FUN_REL E1 E2" |
|
127 |
|
128 lemma FUN_REL_EQ: |
|
129 "(op =) ===> (op =) = (op =)" |
|
130 by (simp add: expand_fun_eq) |
|
131 |
|
132 lemma FUN_QUOTIENT: |
|
133 assumes q1: "QUOTIENT R1 abs1 rep1" |
|
134 and q2: "QUOTIENT R2 abs2 rep2" |
|
135 shows "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
136 proof - |
|
137 have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a" |
|
138 apply(simp add: expand_fun_eq) |
|
139 using q1 q2 |
|
140 apply(simp add: QUOTIENT_def) |
|
141 done |
|
142 moreover |
|
143 have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)" |
|
144 apply(auto) |
|
145 using q1 q2 unfolding QUOTIENT_def |
|
146 apply(metis) |
|
147 done |
|
148 moreover |
|
149 have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> |
|
150 (rep1 ---> abs2) r = (rep1 ---> abs2) s)" |
|
151 apply(auto simp add: expand_fun_eq) |
|
152 using q1 q2 unfolding QUOTIENT_def |
|
153 apply(metis) |
|
154 using q1 q2 unfolding QUOTIENT_def |
|
155 apply(metis) |
|
156 using q1 q2 unfolding QUOTIENT_def |
|
157 apply(metis) |
|
158 using q1 q2 unfolding QUOTIENT_def |
|
159 apply(metis) |
|
160 done |
|
161 ultimately |
|
162 show "QUOTIENT (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)" |
|
163 unfolding QUOTIENT_def by blast |
|
164 qed |
|
165 |
|
166 definition |
|
167 Respects |
|
168 where |
|
169 "Respects R x \<equiv> (R x x)" |
|
170 |
|
171 lemma IN_RESPECTS: |
|
172 shows "(x \<in> Respects R) = R x x" |
|
173 unfolding mem_def Respects_def by simp |
|
174 |
|
175 lemma RESPECTS_THM: |
|
176 shows "Respects (R1 ===> R2) f = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (f y))" |
|
177 unfolding Respects_def |
|
178 by (simp add: expand_fun_eq) |
|
179 |
|
180 lemma RESPECTS_MP: |
|
181 assumes a: "Respects (R1 ===> R2) f" |
|
182 and b: "R1 x y" |
|
183 shows "R2 (f x) (f y)" |
|
184 using a b unfolding Respects_def |
|
185 by simp |
|
186 |
|
187 lemma RESPECTS_REP_ABS: |
|
188 assumes a: "QUOTIENT R1 Abs1 Rep1" |
|
189 and b: "Respects (R1 ===> R2) f" |
|
190 and c: "R1 x x" |
|
191 shows "R2 (f (Rep1 (Abs1 x))) (f x)" |
|
192 using a b[simplified RESPECTS_THM] c unfolding QUOTIENT_def |
|
193 by blast |
|
194 |
|
195 lemma RESPECTS_o: |
|
196 assumes a: "Respects (R2 ===> R3) f" |
|
197 and b: "Respects (R1 ===> R2) g" |
|
198 shows "Respects (R1 ===> R3) (f o g)" |
|
199 using a b unfolding Respects_def |
|
200 by simp |
|
201 |
|
202 (* |
|
203 definition |
|
204 "RES_EXISTS_EQUIV R P \<equiv> (\<exists>x \<in> Respects R. P x) \<and> |
|
205 (\<forall>x\<in> Respects R. \<forall>y\<in> Respects R. P x \<and> P y \<longrightarrow> R x y)" |
|
206 *) |
|
207 |
|
208 lemma FUN_REL_EQ_REL: |
|
209 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
210 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
211 shows "(R1 ===> R2) f g = ((Respects (R1 ===> R2) f) \<and> (Respects (R1 ===> R2) g) |
|
212 \<and> ((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g))" |
|
213 using FUN_QUOTIENT[OF q1 q2] unfolding Respects_def QUOTIENT_def expand_fun_eq |
|
214 by blast |
|
215 |
|
216 (* q1 and q2 not used; see next lemma *) |
|
217 lemma FUN_REL_MP: |
|
218 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
219 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
220 shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
221 by simp |
|
222 |
|
223 lemma FUN_REL_IMP: |
|
224 shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
225 by simp |
|
226 |
|
227 lemma FUN_REL_EQUALS: |
|
228 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
229 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
230 and r1: "Respects (R1 ===> R2) f" |
|
231 and r2: "Respects (R1 ===> R2) g" |
|
232 shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))" |
|
233 apply(rule_tac iffI) |
|
234 using FUN_QUOTIENT[OF q1 q2] r1 r2 unfolding QUOTIENT_def Respects_def |
|
235 apply(metis FUN_REL_IMP) |
|
236 using r1 unfolding Respects_def expand_fun_eq |
|
237 apply(simp (no_asm_use)) |
|
238 apply(metis QUOTIENT_REL[OF q2] QUOTIENT_REL_REP[OF q1]) |
|
239 done |
|
240 |
|
241 (* ask Peter: FUN_REL_IMP used twice *) |
|
242 lemma FUN_REL_IMP2: |
|
243 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
244 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
245 and r1: "Respects (R1 ===> R2) f" |
|
246 and r2: "Respects (R1 ===> R2) g" |
|
247 and a: "(Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g" |
|
248 shows "R1 x y \<Longrightarrow> R2 (f x) (g y)" |
|
249 using q1 q2 r1 r2 a |
|
250 by (simp add: FUN_REL_EQUALS) |
|
251 |
|
252 lemma EQUALS_PRS: |
|
253 assumes q: "QUOTIENT R Abs Rep" |
|
254 shows "(x = y) = R (Rep x) (Rep y)" |
|
255 by (simp add: QUOTIENT_REL_REP[OF q]) |
|
256 |
|
257 lemma EQUALS_RSP: |
|
258 assumes q: "QUOTIENT R Abs Rep" |
|
259 and a: "R x1 x2" "R y1 y2" |
|
260 shows "R x1 y1 = R x2 y2" |
|
261 using QUOTIENT_SYM[OF q] QUOTIENT_TRANS[OF q] unfolding SYM_def TRANS_def |
|
262 using a by blast |
|
263 |
|
264 lemma LAMBDA_PRS: |
|
265 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
266 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
267 shows "(\<lambda>x. f x) = (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x)))" |
|
268 unfolding expand_fun_eq |
|
269 using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] |
|
270 by simp |
|
271 |
|
272 lemma LAMBDA_PRS1: |
|
273 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
274 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
275 shows "(\<lambda>x. f x) = (Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x)" |
|
276 unfolding expand_fun_eq |
|
277 by (subst LAMBDA_PRS[OF q1 q2]) (simp) |
|
278 |
|
279 (* Ask Peter: assumption q1 and q2 not used and lemma is the 'identity' *) |
|
280 lemma LAMBDA_RSP: |
|
281 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
282 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
283 and a: "(R1 ===> R2) f1 f2" |
|
284 shows "(R1 ===> R2) (\<lambda>x. f1 x) (\<lambda>y. f2 y)" |
|
285 by (rule a) |
|
286 |
|
287 (* ASK Peter about next four lemmas in quotientScript |
|
288 lemma ABSTRACT_PRS: |
|
289 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
290 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
291 shows "f = (Rep1 ---> Abs2) ???" |
|
292 *) |
|
293 |
|
294 lemma LAMBDA_REP_ABS_RSP: |
|
295 assumes r1: "\<And>r r'. R1 r r' \<Longrightarrow>R1 r (Rep1 (Abs1 r'))" |
|
296 and r2: "\<And>r r'. R2 r r' \<Longrightarrow>R2 r (Rep2 (Abs2 r'))" |
|
297 shows "(R1 ===> R2) f1 f2 \<Longrightarrow> (R1 ===> R2) f1 ((Abs1 ---> Rep2) ((Rep1 ---> Abs2) f2))" |
|
298 using r1 r2 by auto |
|
299 |
|
300 lemma REP_ABS_RSP: |
|
301 assumes q: "QUOTIENT R Abs Rep" |
|
302 and a: "R x1 x2" |
|
303 shows "R x1 (Rep (Abs x2))" |
|
304 using a |
|
305 by (metis QUOTIENT_REL[OF q] QUOTIENT_ABS_REP[OF q] QUOTIENT_REP_REFL[OF q]) |
|
306 |
|
307 (* ----------------------------------------------------- *) |
|
308 (* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE, *) |
|
309 (* RES_FORALL, RES_EXISTS, RES_EXISTS_EQUIV *) |
|
310 (* ----------------------------------------------------- *) |
|
311 |
|
312 (* what is RES_FORALL *) |
|
313 (*--`!R (abs:'a -> 'b) rep. QUOTIENT R abs rep ==> |
|
314 !f. $! f = RES_FORALL (respects R) ((abs --> I) f)`--*) |
|
315 (*as peter here *) |
|
316 |
|
317 (* bool theory: COND, LET *) |
|
318 |
|
319 lemma IF_PRS: |
|
320 assumes q: "QUOTIENT R Abs Rep" |
|
321 shows "If a b c = Abs (If a (Rep b) (Rep c))" |
|
322 using QUOTIENT_ABS_REP[OF q] by auto |
|
323 |
|
324 (* ask peter: no use of q *) |
|
325 lemma IF_RSP: |
|
326 assumes q: "QUOTIENT R Abs Rep" |
|
327 and a: "a1 = a2" "R b1 b2" "R c1 c2" |
|
328 shows "R (If a1 b1 c1) (If a2 b2 c2)" |
|
329 using a by auto |
|
330 |
|
331 lemma LET_PRS: |
|
332 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
333 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
334 shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))" |
|
335 using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto |
|
336 |
|
337 lemma LET_RSP: |
|
338 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
339 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
340 and a1: "(R1 ===> R2) f g" |
|
341 and a2: "R1 x y" |
|
342 shows "R2 (Let x f) (Let y g)" |
|
343 using FUN_REL_MP[OF q1 q2 a1] a2 |
|
344 by auto |
|
345 |
|
346 |
|
347 (* ask peter what are literal_case *) |
|
348 (* literal_case_PRS *) |
|
349 (* literal_case_RSP *) |
|
350 |
|
351 |
|
352 (* FUNCTION APPLICATION *) |
|
353 |
|
354 lemma APPLY_PRS: |
|
355 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
356 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
357 shows "f x = Abs2 (((Abs1 ---> Rep2) f) (Rep1 x))" |
|
358 using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] by auto |
|
359 |
|
360 (* ask peter: no use of q1 q2 *) |
|
361 lemma APPLY_RSP: |
|
362 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
363 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
364 and a: "(R1 ===> R2) f g" "R1 x y" |
|
365 shows "R2 (f x) (g y)" |
|
366 using a by (rule FUN_REL_IMP) |
|
367 |
|
368 |
|
369 (* combinators: I, K, o, C, W *) |
|
370 |
|
371 lemma I_PRS: |
|
372 assumes q: "QUOTIENT R Abs Rep" |
|
373 shows "(\<lambda>x. x) e = Abs ((\<lambda> x. x) (Rep e))" |
|
374 using QUOTIENT_ABS_REP[OF q] by auto |
|
375 |
|
376 lemma I_RSP: |
|
377 assumes q: "QUOTIENT R Abs Rep" |
|
378 and a: "R e1 e2" |
|
379 shows "R ((\<lambda>x. x) e1) ((\<lambda> x. x) e2)" |
|
380 using a by auto |
|
381 |
|
382 lemma o_PRS: |
|
383 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
384 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
385 and q3: "QUOTIENT R3 Abs3 Rep3" |
|
386 shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))" |
|
387 using QUOTIENT_ABS_REP[OF q1] QUOTIENT_ABS_REP[OF q2] QUOTIENT_ABS_REP[OF q3] |
|
388 unfolding o_def expand_fun_eq |
|
389 by simp |
|
390 |
|
391 lemma o_RSP: |
|
392 assumes q1: "QUOTIENT R1 Abs1 Rep1" |
|
393 and q2: "QUOTIENT R2 Abs2 Rep2" |
|
394 and q3: "QUOTIENT R3 Abs3 Rep3" |
|
395 and a1: "(R2 ===> R3) f1 f2" |
|
396 and a2: "(R1 ===> R2) g1 g2" |
|
397 shows "(R1 ===> R3) (f1 o g1) (f2 o g2)" |
|
398 using a1 a2 unfolding o_def expand_fun_eq |
|
399 by (auto) |
|
400 |
|
401 end |