1 (*<*) |
|
2 theory Slides9 |
|
3 imports "~~/src/HOL/Library/LaTeXsugar" "Nominal" |
|
4 begin |
|
5 |
|
6 notation (latex output) |
|
7 set ("_") and |
|
8 Cons ("_::/_" [66,65] 65) |
|
9 |
|
10 (*>*) |
|
11 |
|
12 |
|
13 text_raw {* |
|
14 %% shallow, deep, and recursive binders |
|
15 %% |
|
16 %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010} |
|
17 %%\renewcommand{\slidecaption}{Uppsala, 3.~March 2011} |
|
18 \renewcommand{\slidecaption}{Leicester, 23.~November 2011} |
|
19 \newcommand{\soutt}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt] |
|
20 \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};} |
|
21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
22 \mode<presentation>{ |
|
23 \begin{frame}<1>[t] |
|
24 \frametitle{% |
|
25 \begin{tabular}{@ {\hspace{-3mm}}c@ {}} |
|
26 \\ |
|
27 \LARGE General Binding Structures\\[-1mm] |
|
28 \LARGE in Nominal Isabelle 2\\ |
|
29 \end{tabular}} |
|
30 \begin{center} |
|
31 Christian Urban |
|
32 \end{center} |
|
33 \begin{center} |
|
34 joint work with {\bf Cezary Kaliszyk}\\[0mm] |
|
35 \end{center} |
|
36 \end{frame}} |
|
37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
38 |
|
39 *} |
|
40 |
|
41 text_raw {* |
|
42 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
43 \mode<presentation>{ |
|
44 \begin{frame}<1> |
|
45 \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}} |
|
46 \mbox{}\\[-6mm] |
|
47 |
|
48 \begin{itemize} |
|
49 \item the old Nominal Isabelle provided a reasoning infrastructure for single binders\medskip |
|
50 |
|
51 \begin{center} |
|
52 Lam [a].(Var a) |
|
53 \end{center}\bigskip |
|
54 |
|
55 \item<2-> but representing |
|
56 |
|
57 \begin{center} |
|
58 $\forall\{a_1,\ldots,a_n\}.\; T$ |
|
59 \end{center}\medskip |
|
60 |
|
61 with single binders and reasoning about it is a \alert{\bf major} pain; |
|
62 take my word for it! |
|
63 \end{itemize} |
|
64 |
|
65 \only<1>{ |
|
66 \begin{textblock}{6}(1.5,11) |
|
67 \small |
|
68 for example\\ |
|
69 \begin{tabular}{l@ {\hspace{2mm}}l} |
|
70 & a $\fresh$ Lam [a]. t\\ |
|
71 & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\ |
|
72 & Barendregt-style reasoning about bound variables\\ |
|
73 & (variable convention can lead to faulty reasoning) |
|
74 \end{tabular} |
|
75 \end{textblock}} |
|
76 |
|
77 \end{frame}} |
|
78 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
79 *} |
|
80 |
|
81 text_raw {* |
|
82 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
83 \mode<presentation>{ |
|
84 \begin{frame}[c] |
|
85 \frametitle{} |
|
86 |
|
87 \begin{tabular}{c@ {\hspace{2mm}}c} |
|
88 \\[6mm] |
|
89 \begin{tabular}{c} |
|
90 \includegraphics[scale=0.11]{harper.jpg}\\[-2mm] |
|
91 {\footnotesize Bob Harper}\\[-2.5mm] |
|
92 {\footnotesize (CMU)} |
|
93 \end{tabular} |
|
94 \begin{tabular}{c} |
|
95 \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm] |
|
96 {\footnotesize Frank Pfenning}\\[-2.5mm] |
|
97 {\footnotesize (CMU)} |
|
98 \end{tabular} & |
|
99 |
|
100 \begin{tabular}{p{6cm}} |
|
101 \raggedright |
|
102 \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005, |
|
103 $\sim$31pp} |
|
104 \end{tabular}\\ |
|
105 |
|
106 \pause |
|
107 \\[0mm] |
|
108 |
|
109 \begin{tabular}{c} |
|
110 \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] |
|
111 {\footnotesize Andrew Appel}\\[-2.5mm] |
|
112 {\footnotesize (Princeton)} |
|
113 \end{tabular} & |
|
114 |
|
115 \begin{tabular}{p{6cm}} |
|
116 \raggedright |
|
117 \color{gray}{relied on their proof in a\\ {\bf security} critical application} |
|
118 \end{tabular} |
|
119 \end{tabular}\medskip\pause |
|
120 |
|
121 \small |
|
122 \begin{minipage}{1.0\textwidth} |
|
123 (I also found an {\bf error} in my Ph.D.-thesis about cut-elimination |
|
124 examined by Henk Barendregt and Andy Pitts.) |
|
125 \end{minipage} |
|
126 |
|
127 \end{frame}} |
|
128 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
129 *} |
|
130 |
|
131 text_raw {* |
|
132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
133 \mode<presentation>{ |
|
134 \begin{frame}[c] |
|
135 \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}} |
|
136 |
|
137 \begin{itemize} |
|
138 \item<1-> but representing |
|
139 |
|
140 \begin{center} |
|
141 $\forall\{a_1,\ldots,a_n\}.\; T$ |
|
142 \end{center}\medskip |
|
143 |
|
144 with single binders and reasoning about it was a \alert{\bf major} pain; |
|
145 take my word for it! |
|
146 \end{itemize} |
|
147 |
|
148 |
|
149 \end{frame}} |
|
150 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
151 *} |
|
152 |
|
153 text_raw {* |
|
154 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
155 \mode<presentation>{ |
|
156 \begin{frame}<1-6> |
|
157 \frametitle{New Types in HOL} |
|
158 |
|
159 \begin{center} |
|
160 \begin{tikzpicture}[scale=1.5] |
|
161 %%%\draw[step=2mm] (-4,-1) grid (4,1); |
|
162 |
|
163 \onslide<2-4,6>{\draw[very thick] (0.7,0.4) circle (4.25mm);} |
|
164 \onslide<1-4,6>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);} |
|
165 \onslide<3-5,6>{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);} |
|
166 |
|
167 \onslide<3-4,6>{\draw (-2.0, 0.845) -- (0.7,0.845);} |
|
168 \onslide<3-4,6>{\draw (-2.0,-0.045) -- (0.7,-0.045);} |
|
169 |
|
170 \onslide<4-4,6>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}} |
|
171 \onslide<4-5,6>{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}} |
|
172 \onslide<1-4,6>{\draw (1.8, 0.48) node[right=-0.1mm] |
|
173 {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<4-4,6>{\alert{(sets of raw terms)}}\end{tabular}};} |
|
174 \onslide<2-4,6>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};} |
|
175 \onslide<3-5,6>{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};} |
|
176 |
|
177 \onslide<3-4,6>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);} |
|
178 \onslide<3-4,6>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};} |
|
179 |
|
180 \onslide<6>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);} |
|
181 \end{tikzpicture} |
|
182 \end{center} |
|
183 |
|
184 \begin{center} |
|
185 \textcolor{red}{\large\bf\onslide<6>{define $\alpha$-equivalence}} |
|
186 \end{center} |
|
187 |
|
188 \end{frame}} |
|
189 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
190 *} |
|
191 |
|
192 |
|
193 |
|
194 text_raw {* |
|
195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
196 \mode<presentation>{ |
|
197 \begin{frame}<1-4> |
|
198 \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}} |
|
199 \mbox{}\\[-3mm] |
|
200 |
|
201 \begin{itemize} |
|
202 \item binding sets of names has some interesting properties:\medskip |
|
203 |
|
204 \begin{center} |
|
205 \begin{tabular}{l} |
|
206 \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$} |
|
207 \bigskip\smallskip\\ |
|
208 |
|
209 \onslide<2->{% |
|
210 \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$} |
|
211 }\bigskip\smallskip\\ |
|
212 |
|
213 \onslide<3->{% |
|
214 \textcolor{blue}{$\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$} |
|
215 }\medskip\\ |
|
216 \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type} |
|
217 \end{tabular} |
|
218 \end{center} |
|
219 \end{itemize} |
|
220 |
|
221 \begin{textblock}{8}(2,14.5) |
|
222 \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct |
|
223 \end{textblock} |
|
224 |
|
225 \only<4>{ |
|
226 \begin{textblock}{6}(2.5,4) |
|
227 \begin{tikzpicture} |
|
228 \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
229 {\normalsize\color{darkgray} |
|
230 \begin{minipage}{8cm}\raggedright |
|
231 For type-schemes the order of bound names does not matter, and |
|
232 $\alpha$-equivalence is preserved under \alert{vacuous} binders. |
|
233 \end{minipage}}; |
|
234 \end{tikzpicture} |
|
235 \end{textblock}} |
|
236 \end{frame}} |
|
237 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
238 *} |
|
239 |
|
240 text_raw {* |
|
241 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
242 \mode<presentation>{ |
|
243 \begin{frame}<1-3> |
|
244 \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}} |
|
245 \mbox{}\\[-3mm] |
|
246 |
|
247 \begin{itemize} |
|
248 \item alpha-equivalence being preserved under vacuous binders is \underline{not} always |
|
249 wanted:\bigskip\bigskip\normalsize |
|
250 |
|
251 \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l} |
|
252 $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\ |
|
253 \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}} |
|
254 \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and} |
|
255 \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$} |
|
256 \end{tabular}} |
|
257 |
|
258 |
|
259 \end{itemize} |
|
260 |
|
261 \end{frame}} |
|
262 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
263 *} |
|
264 |
|
265 text_raw {* |
|
266 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
267 \mode<presentation>{ |
|
268 \begin{frame}<1> |
|
269 \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}} |
|
270 \mbox{}\\[-3mm] |
|
271 |
|
272 \begin{itemize} |
|
273 \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip |
|
274 |
|
275 \begin{center} |
|
276 \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l} |
|
277 $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\ |
|
278 $\;\;\;\not\approx_\alpha |
|
279 \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$ |
|
280 \end{tabular}} |
|
281 \end{center} |
|
282 |
|
283 |
|
284 \end{itemize} |
|
285 |
|
286 \end{frame}} |
|
287 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
288 *} |
|
289 |
|
290 text_raw {* |
|
291 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
292 \mode<presentation>{ |
|
293 \begin{frame}<1-2> |
|
294 \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}} |
|
295 \mbox{}\\[-3mm] |
|
296 |
|
297 \begin{itemize} |
|
298 \item the order does not matter and alpha-equivelence is preserved under |
|
299 vacuous binders \textcolor{gray}{(restriction)}\medskip |
|
300 |
|
301 \item the order does not matter, but the cardinality of the binders |
|
302 must be the same \textcolor{gray}{(abstraction)}\medskip |
|
303 |
|
304 \item the order does matter \textcolor{gray}{(iterated single binders)} |
|
305 \end{itemize} |
|
306 |
|
307 \onslide<2->{ |
|
308 \begin{center} |
|
309 \isacommand{bind (set+)}\hspace{6mm} |
|
310 \isacommand{bind (set)}\hspace{6mm} |
|
311 \isacommand{bind} |
|
312 \end{center}} |
|
313 |
|
314 \end{frame}} |
|
315 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
316 *} |
|
317 |
|
318 text_raw {* |
|
319 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
320 \mode<presentation>{ |
|
321 \begin{frame}<1-3> |
|
322 \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}} |
|
323 \mbox{}\\[-6mm] |
|
324 |
|
325 \mbox{}\hspace{10mm} |
|
326 \begin{tabular}{ll} |
|
327 \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ |
|
328 \hspace{5mm}\phantom{$|$} Var name\\ |
|
329 \hspace{5mm}$|$ App trm trm\\ |
|
330 \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm |
|
331 & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\ |
|
332 \hspace{5mm}$|$ Let \only<2->{as::}assns \only<2->{t::}trm |
|
333 & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\ |
|
334 \multicolumn{2}{l}{\isacommand{and} assns $=$}\\ |
|
335 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ |
|
336 \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\ |
|
337 \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\ |
|
338 \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ []}}\\ |
|
339 \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ [a] @ bn(as)}}\\ |
|
340 \end{tabular} |
|
341 |
|
342 |
|
343 |
|
344 \end{frame}} |
|
345 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
346 *} |
|
347 |
|
348 |
|
349 text_raw {* |
|
350 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
351 \mode<presentation>{ |
|
352 \begin{frame}<1-2,4-8> |
|
353 \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}} |
|
354 \mbox{}\\[-3mm] |
|
355 |
|
356 \begin{itemize} |
|
357 \item lets first look at pairs\bigskip\medskip |
|
358 |
|
359 \textcolor{blue}{\begin{tabular}{@ {\hspace{1cm}}l} |
|
360 $(as, x) \onslide<2->{\approx\!}\makebox[5mm][l]{\only<2-6>{${}_{\text{set}}$}% |
|
361 \only<7>{${}_{\text{\alert{list}}}$}% |
|
362 \only<8>{${}_{\text{\alert{set+}}}$}}% |
|
363 \,\onslide<2->{(bs,y)}$ |
|
364 \end{tabular}}\bigskip |
|
365 \end{itemize} |
|
366 |
|
367 \only<1>{ |
|
368 \begin{textblock}{8}(3,8.5) |
|
369 \begin{tabular}{l@ {\hspace{2mm}}p{8cm}} |
|
370 & \textcolor{blue}{$as$} is a set of names\ldots the binders\\ |
|
371 & \textcolor{blue}{$x$} is the body (might be a tuple)\\ |
|
372 & \textcolor{blue}{$\approx_{\text{set}}$} is where the cardinality |
|
373 of the binders has to be the same\\ |
|
374 \end{tabular} |
|
375 \end{textblock}} |
|
376 |
|
377 \only<4->{ |
|
378 \begin{textblock}{12}(5,8) |
|
379 \textcolor{blue}{ |
|
380 \begin{tabular}{ll@ {\hspace{1mm}}l} |
|
381 $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm] |
|
382 & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm] |
|
383 & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$(\pi \act x) = y$}\\[1mm] |
|
384 & \only<6-7>{$\;\;\;\wedge$}\only<8>{\textcolor{gray}{\xout{$\;\;\;\wedge$}}} & |
|
385 \only<6-7>{$\pi \act as = bs$}\only<8>{\textcolor{gray}{\xout{$\pi \act as = bs$}}}\\ |
|
386 \end{tabular}} |
|
387 \end{textblock}} |
|
388 |
|
389 \only<7>{ |
|
390 \begin{textblock}{7}(3,13.8) |
|
391 \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of names |
|
392 \end{textblock}} |
|
393 \end{frame}} |
|
394 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
395 *} |
|
396 |
|
397 text_raw {* |
|
398 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
399 \mode<presentation>{ |
|
400 \begin{frame}<1-3> |
|
401 \frametitle{\begin{tabular}{c}Examples\end{tabular}} |
|
402 \mbox{}\\[-3mm] |
|
403 |
|
404 \begin{itemize} |
|
405 \item lets look at type-schemes:\medskip\medskip |
|
406 |
|
407 \begin{center} |
|
408 \textcolor{blue}{$(as, x) \approx\!\makebox[5mm][l]{${}_{\text{set}}$} (bs, y)$} |
|
409 \end{center}\medskip |
|
410 |
|
411 \onslide<2->{ |
|
412 \begin{center} |
|
413 \textcolor{blue}{ |
|
414 \begin{tabular}{l} |
|
415 $\text{fv}(x) = \{x\}$\\[1mm] |
|
416 $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\ |
|
417 \end{tabular}} |
|
418 \end{center}} |
|
419 \end{itemize} |
|
420 |
|
421 |
|
422 \only<3->{ |
|
423 \begin{textblock}{4}(0.3,12) |
|
424 \begin{tikzpicture} |
|
425 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
426 {\tiny\color{darkgray} |
|
427 \begin{minipage}{3.4cm}\raggedright |
|
428 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
429 \multicolumn{2}{@ {}l}{set+:}\\ |
|
430 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
431 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
432 $\wedge$ & $\pi \cdot x = y$\\ |
|
433 \\ |
|
434 \end{tabular} |
|
435 \end{minipage}}; |
|
436 \end{tikzpicture} |
|
437 \end{textblock}} |
|
438 \only<3->{ |
|
439 \begin{textblock}{4}(5.2,12) |
|
440 \begin{tikzpicture} |
|
441 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
442 {\tiny\color{darkgray} |
|
443 \begin{minipage}{3.4cm}\raggedright |
|
444 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
445 \multicolumn{2}{@ {}l}{set:}\\ |
|
446 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
447 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
448 $\wedge$ & $\pi \cdot x = y$\\ |
|
449 $\wedge$ & $\pi \cdot as = bs$\\ |
|
450 \end{tabular} |
|
451 \end{minipage}}; |
|
452 \end{tikzpicture} |
|
453 \end{textblock}} |
|
454 \only<3->{ |
|
455 \begin{textblock}{4}(10.2,12) |
|
456 \begin{tikzpicture} |
|
457 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
458 {\tiny\color{darkgray} |
|
459 \begin{minipage}{3.4cm}\raggedright |
|
460 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
461 \multicolumn{2}{@ {}l}{list:}\\ |
|
462 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
463 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
464 $\wedge$ & $\pi \cdot x = y$\\ |
|
465 $\wedge$ & $\pi \cdot as = bs$\\ |
|
466 \end{tabular} |
|
467 \end{minipage}}; |
|
468 \end{tikzpicture} |
|
469 \end{textblock}} |
|
470 |
|
471 \end{frame}} |
|
472 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
473 *} |
|
474 |
|
475 text_raw {* |
|
476 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
477 \mode<presentation>{ |
|
478 \begin{frame}<1-2> |
|
479 \frametitle{\begin{tabular}{c}Examples\end{tabular}} |
|
480 \mbox{}\\[-3mm] |
|
481 |
|
482 \begin{center} |
|
483 \textcolor{blue}{ |
|
484 \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$} |
|
485 \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$}} |
|
486 \end{center} |
|
487 |
|
488 \begin{itemize} |
|
489 \item \textcolor{blue}{$\approx_{\text{set+}}$, $\approx_{\text{set}}$% |
|
490 \only<2>{, \alert{$\not\approx_{\text{list}}$}}} |
|
491 \end{itemize} |
|
492 |
|
493 |
|
494 \only<1->{ |
|
495 \begin{textblock}{4}(0.3,12) |
|
496 \begin{tikzpicture} |
|
497 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
498 {\tiny\color{darkgray} |
|
499 \begin{minipage}{3.4cm}\raggedright |
|
500 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
501 \multicolumn{2}{@ {}l}{set+:}\\ |
|
502 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
503 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
504 $\wedge$ & $\pi \cdot x = y$\\ |
|
505 \\ |
|
506 \end{tabular} |
|
507 \end{minipage}}; |
|
508 \end{tikzpicture} |
|
509 \end{textblock}} |
|
510 \only<1->{ |
|
511 \begin{textblock}{4}(5.2,12) |
|
512 \begin{tikzpicture} |
|
513 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
514 {\tiny\color{darkgray} |
|
515 \begin{minipage}{3.4cm}\raggedright |
|
516 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
517 \multicolumn{2}{@ {}l}{set:}\\ |
|
518 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
519 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
520 $\wedge$ & $\pi \cdot x = y$\\ |
|
521 $\wedge$ & $\pi \cdot as = bs$\\ |
|
522 \end{tabular} |
|
523 \end{minipage}}; |
|
524 \end{tikzpicture} |
|
525 \end{textblock}} |
|
526 \only<1->{ |
|
527 \begin{textblock}{4}(10.2,12) |
|
528 \begin{tikzpicture} |
|
529 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
530 {\tiny\color{darkgray} |
|
531 \begin{minipage}{3.4cm}\raggedright |
|
532 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
533 \multicolumn{2}{@ {}l}{list:}\\ |
|
534 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
535 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
536 $\wedge$ & $\pi \cdot x = y$\\ |
|
537 $\wedge$ & $\pi \cdot as = bs$\\ |
|
538 \end{tabular} |
|
539 \end{minipage}}; |
|
540 \end{tikzpicture} |
|
541 \end{textblock}} |
|
542 |
|
543 \end{frame}} |
|
544 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
545 *} |
|
546 |
|
547 text_raw {* |
|
548 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
549 \mode<presentation>{ |
|
550 \begin{frame}<1-2> |
|
551 \frametitle{\begin{tabular}{c}Examples\end{tabular}} |
|
552 \mbox{}\\[-3mm] |
|
553 |
|
554 \begin{center} |
|
555 \textcolor{blue}{\only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$}} |
|
556 \end{center} |
|
557 |
|
558 \begin{itemize} |
|
559 \item \textcolor{blue}{$\approx_{\text{set+}}$, $\not\approx_{\text{set}}$, |
|
560 $\not\approx_{\text{list}}$} |
|
561 \end{itemize} |
|
562 |
|
563 |
|
564 \only<1->{ |
|
565 \begin{textblock}{4}(0.3,12) |
|
566 \begin{tikzpicture} |
|
567 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
568 {\tiny\color{darkgray} |
|
569 \begin{minipage}{3.4cm}\raggedright |
|
570 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
571 \multicolumn{2}{@ {}l}{set+:}\\ |
|
572 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
573 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
574 $\wedge$ & $\pi \cdot x = y$\\ |
|
575 \\ |
|
576 \end{tabular} |
|
577 \end{minipage}}; |
|
578 \end{tikzpicture} |
|
579 \end{textblock}} |
|
580 \only<1->{ |
|
581 \begin{textblock}{4}(5.2,12) |
|
582 \begin{tikzpicture} |
|
583 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
584 {\tiny\color{darkgray} |
|
585 \begin{minipage}{3.4cm}\raggedright |
|
586 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
587 \multicolumn{2}{@ {}l}{set:}\\ |
|
588 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
589 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
590 $\wedge$ & $\pi \cdot x = y$\\ |
|
591 $\wedge$ & $\pi \cdot as = bs$\\ |
|
592 \end{tabular} |
|
593 \end{minipage}}; |
|
594 \end{tikzpicture} |
|
595 \end{textblock}} |
|
596 \only<1->{ |
|
597 \begin{textblock}{4}(10.2,12) |
|
598 \begin{tikzpicture} |
|
599 \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
600 {\tiny\color{darkgray} |
|
601 \begin{minipage}{3.4cm}\raggedright |
|
602 \begin{tabular}{r@ {\hspace{1mm}}l} |
|
603 \multicolumn{2}{@ {}l}{list:}\\ |
|
604 $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ |
|
605 $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ |
|
606 $\wedge$ & $\pi \cdot x = y$\\ |
|
607 $\wedge$ & $\pi \cdot as = bs$\\ |
|
608 \end{tabular} |
|
609 \end{minipage}}; |
|
610 \end{tikzpicture} |
|
611 \end{textblock}} |
|
612 |
|
613 \only<2>{ |
|
614 \begin{textblock}{6}(2.5,4) |
|
615 \begin{tikzpicture} |
|
616 \draw (0,0) node[inner sep=5mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] |
|
617 {\normalsize |
|
618 \begin{minipage}{8cm}\raggedright |
|
619 \begin{itemize} |
|
620 \item \color{darkgray}$\alpha$-equivalences coincide when a single name is |
|
621 abstracted |
|
622 \item \color{darkgray}in that case they are equivalent to ``old-fashioned'' definitions of $\alpha$ |
|
623 \end{itemize} |
|
624 \end{minipage}}; |
|
625 \end{tikzpicture} |
|
626 \end{textblock}} |
|
627 |
|
628 \end{frame}} |
|
629 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
630 *} |
|
631 |
|
632 text_raw {* |
|
633 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
634 \mode<presentation>{ |
|
635 \begin{frame}<1-> |
|
636 \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}} |
|
637 \mbox{}\\[-6mm] |
|
638 |
|
639 \mbox{}\hspace{10mm} |
|
640 \begin{tabular}{ll} |
|
641 \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ |
|
642 \hspace{5mm}\phantom{$|$} Var name\\ |
|
643 \hspace{5mm}$|$ App trm trm\\ |
|
644 \hspace{5mm}$|$ Lam x::name t::trm |
|
645 & \isacommand{bind} x \isacommand{in} t\\ |
|
646 \hspace{5mm}$|$ Let as::assns t::trm |
|
647 & \isacommand{bind} bn(as) \isacommand{in} t\\ |
|
648 \multicolumn{2}{l}{\isacommand{and} assns $=$}\\ |
|
649 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ |
|
650 \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\ |
|
651 \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\ |
|
652 \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\ |
|
653 \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\ |
|
654 \end{tabular} |
|
655 |
|
656 \end{frame}} |
|
657 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
658 *} |
|
659 |
|
660 |
|
661 text_raw {* |
|
662 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
663 \mode<presentation>{ |
|
664 \begin{frame}<1->[t] |
|
665 \frametitle{\begin{tabular}{c}Binder Clauses\end{tabular}} |
|
666 |
|
667 \begin{itemize} |
|
668 \item We need to have a `clear scope' for a bound variable, and bound |
|
669 variables should not be free and bound at the same time.\bigskip |
|
670 \end{itemize} |
|
671 |
|
672 \begin{center} |
|
673 \only<1>{ |
|
674 \begin{tabular}{@ {\hspace{-5mm}}l} |
|
675 \alert{\bf shallow binders}\\ |
|
676 \hspace{4mm}Lam x::name t::trm\hspace{4mm} \isacommand{bind} x \isacommand{in} t\\ |
|
677 \hspace{4mm}All xs::name set T::ty\hspace{4mm} \isacommand{bind} xs \isacommand{in} T\\ |
|
678 \hspace{4mm}Foo x::name t$_1$::trm t$_2$::trm\hspace{4mm} |
|
679 \isacommand{bind} x \isacommand{in} t$_1$, \isacommand{bind} x \isacommand{in} t$_2$\\ |
|
680 \hspace{4mm}Bar x::name t$_1$::trm t$_2$::trm\hspace{4mm} |
|
681 \isacommand{bind} x \isacommand{in} t$_1$ t$_2$\\ |
|
682 \end{tabular}} |
|
683 \only<2>{ |
|
684 \begin{tabular}{@ {\hspace{-5mm}}l} |
|
685 \alert{\bf deep binders} \\ |
|
686 \hspace{4mm}Let as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t\\ |
|
687 \hspace{4mm}Foo as::assns t$_1$::trm t$_2$::trm\\ |
|
688 \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\[4mm] |
|
689 \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Bar as::assns t$_1$::trm t$_2$::trm\\ |
|
690 \hspace{20mm}\isacommand{bind} bn$_1$(as) \isacommand{in} t$_1$, \isacommand{bind} bn$_2$(as) \isacommand{in} t$_2$\\ |
|
691 \end{tabular}} |
|
692 \only<3>{ |
|
693 \begin{tabular}{@ {\hspace{-5mm}}l} |
|
694 {\bf deep \alert{recursive} binders} \\ |
|
695 \hspace{4mm}Let\_rec as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t as\\[4mm] |
|
696 |
|
697 \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Foo\_rec as::assns t$_1$::trm t$_2$::trm\hspace{4mm}\\ |
|
698 \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$ as, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\ |
|
699 |
|
700 \end{tabular}} |
|
701 \end{center} |
|
702 |
|
703 \end{frame}} |
|
704 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
705 *} |
|
706 |
|
707 text_raw {* |
|
708 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
709 \mode<presentation>{ |
|
710 \begin{frame}<1-5> |
|
711 \frametitle{\begin{tabular}{c}Our Work\end{tabular}} |
|
712 \mbox{}\\[-6mm] |
|
713 |
|
714 \begin{center} |
|
715 \begin{tikzpicture}[scale=1.5] |
|
716 %%%\draw[step=2mm] (-4,-1) grid (4,1); |
|
717 |
|
718 \onslide<1>{\draw[very thick] (0.7,0.4) circle (4.25mm);} |
|
719 \onslide<1>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);} |
|
720 \onslide<1->{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);} |
|
721 |
|
722 \onslide<1>{\draw (-2.0, 0.845) -- (0.7,0.845);} |
|
723 \onslide<1>{\draw (-2.0,-0.045) -- (0.7,-0.045);} |
|
724 |
|
725 \onslide<1>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}} |
|
726 \onslide<1->{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}} |
|
727 \onslide<1>{\draw (1.8, 0.48) node[right=-0.1mm] |
|
728 {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<1>{\alert{(sets of raw terms)}}\end{tabular}};} |
|
729 \onslide<1>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};} |
|
730 \onslide<1->{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};} |
|
731 |
|
732 \onslide<1>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);} |
|
733 \onslide<1>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};} |
|
734 |
|
735 \onslide<1>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);} |
|
736 \end{tikzpicture} |
|
737 \end{center} |
|
738 |
|
739 \begin{textblock}{9.5}(6,3.5) |
|
740 \begin{itemize} |
|
741 \item<1-> defined fv and $\alpha$ |
|
742 \item<2-> built quotient / new type |
|
743 \item<3-> derived a reasoning infrastructure ($\fresh$, distinctness, injectivity, cases,\ldots) |
|
744 \item<4-> derive a {\bf stronger} cases lemma |
|
745 \item<5-> from this, a {\bf stronger} induction principle (Barendregt variable convention built in)\\ |
|
746 \begin{center} |
|
747 \textcolor{blue}{Foo ($\lambda x. \lambda y. t$) ($\lambda u. \lambda v. s$)} |
|
748 \end{center} |
|
749 \end{itemize} |
|
750 \end{textblock} |
|
751 |
|
752 |
|
753 \end{frame}} |
|
754 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
755 *} |
|
756 |
|
757 |
|
758 text_raw {* |
|
759 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
760 \mode<presentation>{ |
|
761 \begin{frame}<1-> |
|
762 \frametitle{\begin{tabular}{c}Part I: Conclusion\end{tabular}} |
|
763 \mbox{}\\[-6mm] |
|
764 |
|
765 \begin{itemize} |
|
766 \item the user does not see anything of the raw level\medskip |
|
767 \only<1>{\begin{center} |
|
768 Lam a (Var a) \alert{$=$} Lam b (Var b) |
|
769 \end{center}\bigskip} |
|
770 |
|
771 \item<2-> \textcolor{blue}{http://isabelle.in.tum.de/nominal/} |
|
772 \end{itemize} |
|
773 |
|
774 |
|
775 \end{frame}} |
|
776 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
777 *} |
|
778 |
|
779 text_raw {* |
|
780 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
781 \mode<presentation>{ |
|
782 \begin{frame}<1-> |
|
783 \frametitle{\begin{tabular}{c}Part II: $\alpha\beta$-Equal Terms\end{tabular}} |
|
784 |
|
785 \begin{itemize} |
|
786 \item we have implemented a quotient package for Isabelle; |
|
787 \item can now introduce the type of $\alpha\beta$-equal terms (starting |
|
788 from $\alpha$-equal terms). |
|
789 \item on paper this looks easy\pause\bigskip |
|
790 \end{itemize} |
|
791 |
|
792 \begin{center} |
|
793 \begin{tabular}{lll} |
|
794 \smath{x \approx_{\alpha\beta} y} & \smath{\;\not\Rightarrow\;} & |
|
795 \smath{\text{supp}(x) = \text{supp}(y)}\\ |
|
796 & \smath{\;\not\Rightarrow\;} & |
|
797 \smath{\text{size}(x) = \text{size}(y)}\\ |
|
798 \end{tabular} |
|
799 \end{center}\pause |
|
800 |
|
801 \small |
|
802 \begin{center} |
|
803 Andy: \smath{\;\;\text{supp}\mbox{\isasymlbrakk}x\mbox{\isasymrbrakk}_{\approx_{\alpha\beta}} = |
|
804 {\text{\large$\bigcap$}} \{ \text{supp}(y) \;|\; y \approx_{\alpha\beta} x\}} |
|
805 \end{center} |
|
806 |
|
807 \end{frame}} |
|
808 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
809 *} |
|
810 |
|
811 text_raw {* |
|
812 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
813 \mode<presentation>{ |
|
814 \begin{frame}[c] |
|
815 \frametitle{} |
|
816 |
|
817 \begin{center} |
|
818 \begin{tabular}{rcl} |
|
819 \smath{x\;[y := s]} & \smath{\dn} & \smath{\text{if}\;x=y\;\text{then}\;s\;\text{else}\;x}\bigskip\\ |
|
820 \smath{t_1 t_2\;[y := s]} & \smath{\dn} & \smath{t_1[y := s]\;t_2[y := s]}\bigskip\\ |
|
821 \smath{\lambda x.t\;[y := s]} & \smath{\dn} & \smath{\lambda x.\; t[y := s]}\\ |
|
822 \multicolumn{3}{r}{provided \smath{x \fresh (y, s)}} |
|
823 \end{tabular} |
|
824 \end{center} |
|
825 |
|
826 \end{frame}} |
|
827 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
828 *} |
|
829 |
|
830 text_raw {* |
|
831 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
832 \mode<presentation>{ |
|
833 \begin{frame}[t] |
|
834 \frametitle{\begin{tabular}{c}Part III: Regular Languages\\[-8mm]\end{tabular}} |
|
835 |
|
836 \begin{center} |
|
837 \huge\bf\textcolor{gray}{in Theorem Provers}\\ |
|
838 \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} |
|
839 \end{center} |
|
840 |
|
841 \begin{itemize} |
|
842 \item automata @{text "\<Rightarrow>"} graphs, matrices, functions |
|
843 \item<2-> combining automata/graphs |
|
844 |
|
845 \onslide<2->{ |
|
846 \begin{center} |
|
847 \begin{tabular}{ccc} |
|
848 \begin{tikzpicture}[scale=1] |
|
849 %\draw[step=2mm] (-1,-1) grid (1,1); |
|
850 |
|
851 \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); |
|
852 \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); |
|
853 |
|
854 \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
855 \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
856 |
|
857 \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
858 \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
859 |
|
860 \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
861 \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
862 \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
863 |
|
864 \draw (-0.6,0.0) node {\small$A_1$}; |
|
865 \draw ( 0.6,0.0) node {\small$A_2$}; |
|
866 \end{tikzpicture}} |
|
867 |
|
868 & |
|
869 |
|
870 \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}} |
|
871 |
|
872 & |
|
873 |
|
874 \onslide<3->{\begin{tikzpicture}[scale=1] |
|
875 %\draw[step=2mm] (-1,-1) grid (1,1); |
|
876 |
|
877 \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); |
|
878 \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); |
|
879 |
|
880 \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
881 \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
882 |
|
883 \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
884 \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
885 |
|
886 \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
887 \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
888 \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; |
|
889 |
|
890 \draw (C) to [red, very thick, bend left=45] (B); |
|
891 \draw (D) to [red, very thick, bend right=45] (B); |
|
892 |
|
893 \draw (-0.6,0.0) node {\small$A_1$}; |
|
894 \draw ( 0.6,0.0) node {\small$A_2$}; |
|
895 \end{tikzpicture}} |
|
896 |
|
897 \end{tabular} |
|
898 \end{center}\medskip |
|
899 |
|
900 \only<4-5>{ |
|
901 \begin{tabular}{@ {\hspace{-5mm}}l@ {}} |
|
902 disjoint union:\\[2mm] |
|
903 \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}} |
|
904 \end{tabular}} |
|
905 \end{itemize} |
|
906 |
|
907 \only<5>{ |
|
908 \begin{textblock}{13.9}(0.7,7.7) |
|
909 \begin{block}{} |
|
910 \medskip |
|
911 \begin{minipage}{14cm}\raggedright |
|
912 Problems with definition for regularity:\bigskip\\ |
|
913 \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip |
|
914 \end{minipage} |
|
915 \end{block} |
|
916 \end{textblock}} |
|
917 \medskip |
|
918 |
|
919 \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip} |
|
920 |
|
921 \only<7->{You have to \alert{rename} states!} |
|
922 |
|
923 \end{frame}} |
|
924 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
925 *} |
|
926 |
|
927 text_raw {* |
|
928 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
929 \mode<presentation>{ |
|
930 \begin{frame}[t] |
|
931 \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} |
|
932 \mbox{}\\[-15mm]\mbox{} |
|
933 |
|
934 \begin{center} |
|
935 \huge\bf\textcolor{gray}{in Theorem Provers}\\ |
|
936 \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} |
|
937 \end{center} |
|
938 |
|
939 \begin{itemize} |
|
940 \item Kozen's ``paper'' proof of Myhill-Nerode:\\ |
|
941 \hspace{2cm}requires absence of \alert{inaccessible states} |
|
942 \end{itemize}\bigskip\bigskip |
|
943 |
|
944 \begin{center} |
|
945 \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A} |
|
946 \end{center} |
|
947 |
|
948 |
|
949 \end{frame}} |
|
950 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
951 *} |
|
952 |
|
953 text_raw {* |
|
954 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
955 \mode<presentation>{ |
|
956 \begin{frame}[t] |
|
957 \frametitle{} |
|
958 \mbox{}\\[25mm]\mbox{} |
|
959 |
|
960 \begin{textblock}{13.9}(0.7,1.2) |
|
961 \begin{block}{} |
|
962 \begin{minipage}{13.4cm}\raggedright |
|
963 {\bf Definition:}\smallskip\\ |
|
964 |
|
965 A language \smath{A} is \alert{regular}, provided there exists a\\ |
|
966 \alert{regular expression} that matches all strings of \smath{A}. |
|
967 \end{minipage} |
|
968 \end{block} |
|
969 \end{textblock}\pause |
|
970 |
|
971 {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause |
|
972 |
|
973 Infrastructure for free. But do we lose anything?\medskip\pause |
|
974 |
|
975 \begin{minipage}{1.1\textwidth} |
|
976 \begin{itemize} |
|
977 \item pumping lemma\pause |
|
978 \item closure under complementation\pause |
|
979 \item \only<6>{regular expression matching}% |
|
980 \only<7->{\soutt{regular expression matching} |
|
981 {\footnotesize(@{text "\<Rightarrow>"}Brozowski'64, Owens et al '09)}} |
|
982 \item<8-> most textbooks are about automata |
|
983 \end{itemize} |
|
984 \end{minipage} |
|
985 |
|
986 |
|
987 \end{frame}} |
|
988 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
989 |
|
990 *} |
|
991 |
|
992 text_raw {* |
|
993 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
994 \mode<presentation>{ |
|
995 \begin{frame}[c] |
|
996 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
997 |
|
998 \begin{itemize} |
|
999 \item provides necessary and suf\!ficient conditions\\ for a language |
|
1000 being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip |
|
1001 |
|
1002 \item key is the equivalence relation:\medskip |
|
1003 \begin{center} |
|
1004 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} |
|
1005 \end{center} |
|
1006 \end{itemize} |
|
1007 |
|
1008 |
|
1009 \end{frame}} |
|
1010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1011 |
|
1012 *} |
|
1013 |
|
1014 text_raw {* |
|
1015 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1016 \mode<presentation>{ |
|
1017 \begin{frame}[c] |
|
1018 \frametitle{\LARGE The Myhill-Nerode Theorem} |
|
1019 |
|
1020 \begin{center} |
|
1021 \only<1>{% |
|
1022 \begin{tikzpicture}[scale=3] |
|
1023 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
1024 \end{tikzpicture}}% |
|
1025 \only<2->{% |
|
1026 \begin{tikzpicture}[scale=3] |
|
1027 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
1028 \clip[draw] (0.5,0.5) circle (.6cm); |
|
1029 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
1030 \end{tikzpicture}} |
|
1031 \end{center} |
|
1032 |
|
1033 \begin{itemize} |
|
1034 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} |
|
1035 \end{itemize} |
|
1036 |
|
1037 \begin{textblock}{5}(2.1,5.3) |
|
1038 \begin{tikzpicture} |
|
1039 \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm] |
|
1040 {$U\!N\!IV$}; |
|
1041 \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}}; |
|
1042 \end{tikzpicture} |
|
1043 \end{textblock} |
|
1044 |
|
1045 \only<2->{% |
|
1046 \begin{textblock}{5}(9.1,7.2) |
|
1047 \begin{tikzpicture} |
|
1048 \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm] |
|
1049 {@{text "\<lbrakk>x\<rbrakk>"}$_{\approx_{A}}$}; |
|
1050 \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}}; |
|
1051 \end{tikzpicture} |
|
1052 \end{textblock}} |
|
1053 |
|
1054 \only<3->{ |
|
1055 \begin{textblock}{11.9}(1.7,3) |
|
1056 \begin{block}{} |
|
1057 \begin{minipage}{11.4cm}\raggedright |
|
1058 Two directions:\medskip\\ |
|
1059 \begin{tabular}{@ {}ll} |
|
1060 1.)\;finite $\Rightarrow$ regular\\ |
|
1061 \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm] |
|
1062 2.)\;regular $\Rightarrow$ finite\\ |
|
1063 \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} |
|
1064 \end{tabular} |
|
1065 |
|
1066 \end{minipage} |
|
1067 \end{block} |
|
1068 \end{textblock}} |
|
1069 |
|
1070 \end{frame}} |
|
1071 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1072 |
|
1073 *} |
|
1074 |
|
1075 |
|
1076 |
|
1077 text_raw {* |
|
1078 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1079 \mode<presentation>{ |
|
1080 \begin{frame}<-1>[c] |
|
1081 \frametitle{\begin{tabular}{@ {}l}\LARGE% |
|
1082 Transitions between Eq-Classes\end{tabular}} |
|
1083 |
|
1084 \begin{center} |
|
1085 \begin{tikzpicture}[scale=3] |
|
1086 \draw[very thick] (0.5,0.5) circle (.6cm); |
|
1087 \clip[draw] (0.5,0.5) circle (.6cm); |
|
1088 \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); |
|
1089 \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8); |
|
1090 \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6); |
|
1091 \draw[white] (0.1,0.7) node (X) {$X$}; |
|
1092 \draw[white] (0.9,0.5) node (Y) {$Y$}; |
|
1093 \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y); |
|
1094 \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {}; |
|
1095 \end{tikzpicture} |
|
1096 \end{center} |
|
1097 |
|
1098 \begin{center} |
|
1099 \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y} |
|
1100 \end{center} |
|
1101 |
|
1102 \onslide<8>{ |
|
1103 \begin{tabular}{c} |
|
1104 \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] |
|
1105 \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] |
|
1106 \node[state,initial] (q_0) {$R_1$}; |
|
1107 \end{tikzpicture} |
|
1108 \end{tabular}} |
|
1109 |
|
1110 \end{frame}} |
|
1111 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1112 *} |
|
1113 |
|
1114 text_raw {* |
|
1115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1116 \mode<presentation>{ |
|
1117 \begin{frame}[c] |
|
1118 \frametitle{\LARGE The Other Direction} |
|
1119 |
|
1120 One has to prove |
|
1121 |
|
1122 \begin{center} |
|
1123 \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} |
|
1124 \end{center} |
|
1125 |
|
1126 by induction on \smath{r}. Not trivial, but after a bit |
|
1127 of thinking, one can find a \alert{refined} relation:\bigskip |
|
1128 |
|
1129 |
|
1130 \begin{center} |
|
1131 \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c} |
|
1132 \begin{tikzpicture}[scale=1.1] |
|
1133 %Circle |
|
1134 \draw[thick] (0,0) circle (1.1); |
|
1135 \end{tikzpicture} |
|
1136 & |
|
1137 \begin{tikzpicture}[scale=1.1] |
|
1138 %Circle |
|
1139 \draw[thick] (0,0) circle (1.1); |
|
1140 %Main rays |
|
1141 \foreach \a in {0, 90,...,359} |
|
1142 \draw[very thick] (0, 0) -- (\a:1.1); |
|
1143 \foreach \a / \l in {45/1, 135/2, 225/3, 315/4} |
|
1144 \draw (\a: 0.65) node {\small$a_\l$}; |
|
1145 \end{tikzpicture} |
|
1146 & |
|
1147 \begin{tikzpicture}[scale=1.1] |
|
1148 %Circle |
|
1149 \draw[red, thick] (0,0) circle (1.1); |
|
1150 %Main rays |
|
1151 \foreach \a in {0, 45,...,359} |
|
1152 \draw[red, very thick] (0, 0) -- (\a:1.1); |
|
1153 \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2} |
|
1154 \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}}; |
|
1155 \end{tikzpicture}\\ |
|
1156 \small\smath{U\!N\!IV} & |
|
1157 \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} & |
|
1158 \small\smath{U\!N\!IV /\!/ \alert{R}} |
|
1159 \end{tabular}} |
|
1160 \end{center} |
|
1161 |
|
1162 \begin{textblock}{5}(9.8,2.6) |
|
1163 \begin{tikzpicture} |
|
1164 \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; |
|
1165 \end{tikzpicture} |
|
1166 \end{textblock} |
|
1167 |
|
1168 |
|
1169 \end{frame}} |
|
1170 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1171 *} |
|
1172 |
|
1173 text_raw {* |
|
1174 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1175 \mode<presentation>{ |
|
1176 \begin{frame}[t] |
|
1177 \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}} |
|
1178 |
|
1179 \begin{itemize} |
|
1180 \item introduced by Brozowski~'64 |
|
1181 \item a regular expressions after a character has been parsed\\[-18mm]\mbox{} |
|
1182 \end{itemize} |
|
1183 |
|
1184 \only<1>{% |
|
1185 \textcolor{blue}{% |
|
1186 \begin{center} |
|
1187 \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}} |
|
1188 der c $\varnothing$ & $\dn$ & $\varnothing$\\ |
|
1189 der c [] & $\dn$ & $\varnothing$\\ |
|
1190 der c d & $\dn$ & if c $=$ d then [] else $\varnothing$\\ |
|
1191 der c ($r_1 + r_2$) & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\ |
|
1192 der c ($r^\star$) & $\dn$ & (der c $r$) $\cdot$ $r^\star$\\ |
|
1193 der c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\ |
|
1194 & & then (der c $r_1$) $\cdot$ $r_2$ $+$ (der c $r_2$)\\ |
|
1195 & & else (der c $r_1$) $\cdot$ $r_2$\\ |
|
1196 \end{tabular} |
|
1197 \end{center}}} |
|
1198 \only<2>{% |
|
1199 \textcolor{blue}{% |
|
1200 \begin{center} |
|
1201 \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} |
|
1202 pder c $\varnothing$ & $\dn$ & \alert{$\{\}$}\\ |
|
1203 pder c [] & $\dn$ & \alert{$\{\}$}\\ |
|
1204 pder c d & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\ |
|
1205 pder c ($r_1 + r_2$) & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\ |
|
1206 pder c ($r^\star$) & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\ |
|
1207 pder c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\ |
|
1208 & & then (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$} (pder c $r_2$)\\ |
|
1209 & & else (pder c $r_1$) $\cdot$ $r_2$\\ |
|
1210 \end{tabular} |
|
1211 \end{center}}} |
|
1212 |
|
1213 \only<2>{ |
|
1214 \begin{textblock}{6}(8.5,4.7) |
|
1215 \begin{block}{} |
|
1216 \begin{quote} |
|
1217 \begin{minipage}{6cm}\raggedright |
|
1218 \begin{itemize} |
|
1219 \item partial derivatives |
|
1220 \item by Antimirov~'95 |
|
1221 \end{itemize} |
|
1222 \end{minipage} |
|
1223 \end{quote} |
|
1224 \end{block} |
|
1225 \end{textblock}} |
|
1226 |
|
1227 \end{frame}} |
|
1228 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1229 *} |
|
1230 |
|
1231 |
|
1232 text_raw {* |
|
1233 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1234 \mode<presentation>{ |
|
1235 \begin{frame}[t] |
|
1236 \frametitle{\LARGE Partial Derivatives} |
|
1237 |
|
1238 \mbox{}\\[0mm]\mbox{} |
|
1239 |
|
1240 \begin{itemize} |
|
1241 |
|
1242 \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}} |
|
1243 {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}} |
|
1244 refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause |
|
1245 \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause |
|
1246 \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed. |
|
1247 \end{itemize} |
|
1248 |
|
1249 \only<2->{% |
|
1250 \begin{textblock}{5}(3.9,7.2) |
|
1251 \begin{tikzpicture} |
|
1252 \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; |
|
1253 \draw (2.2,0) node {Antimirov '95}; |
|
1254 \end{tikzpicture} |
|
1255 \end{textblock}} |
|
1256 |
|
1257 \end{frame}} |
|
1258 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1259 *} |
|
1260 |
|
1261 |
|
1262 |
|
1263 text_raw {* |
|
1264 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1265 \mode<presentation>{ |
|
1266 \begin{frame}[t] |
|
1267 \frametitle{\LARGE What Have We Achieved?} |
|
1268 |
|
1269 \begin{itemize} |
|
1270 \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} |
|
1271 \medskip\pause |
|
1272 \item regular languages are closed under complementation; this is now easy |
|
1273 \begin{center} |
|
1274 \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}} |
|
1275 \end{center}\pause\medskip |
|
1276 |
|
1277 \item non-regularity (\smath{a^nb^n})\medskip\pause\pause |
|
1278 |
|
1279 \item take \alert{\bf any} language; build the language of substrings\\ |
|
1280 \pause |
|
1281 |
|
1282 then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star}) |
|
1283 |
|
1284 \end{itemize} |
|
1285 |
|
1286 \only<2>{ |
|
1287 \begin{textblock}{10}(4,14) |
|
1288 \small |
|
1289 \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} |
|
1290 \end{textblock}} |
|
1291 |
|
1292 \only<4>{ |
|
1293 \begin{textblock}{5}(2,8.6) |
|
1294 \begin{minipage}{8.8cm} |
|
1295 \begin{block}{} |
|
1296 \begin{minipage}{8.6cm} |
|
1297 If there exists a sufficiently large set \smath{B} (for example infinitely large), |
|
1298 such that |
|
1299 |
|
1300 \begin{center} |
|
1301 \smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. |
|
1302 \end{center} |
|
1303 |
|
1304 then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n}) |
|
1305 \end{minipage} |
|
1306 \end{block} |
|
1307 \end{minipage} |
|
1308 \end{textblock} |
|
1309 } |
|
1310 |
|
1311 \end{frame}} |
|
1312 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1313 *} |
|
1314 |
|
1315 |
|
1316 text_raw {* |
|
1317 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1318 \mode<presentation>{ |
|
1319 \begin{frame}[b] |
|
1320 \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you!\\[5mm]Questions?}} |
|
1321 |
|
1322 \end{frame}} |
|
1323 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1324 *} |
|
1325 |
|
1326 |
|
1327 |
|
1328 |
|
1329 text_raw {* |
|
1330 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1331 \mode<presentation>{ |
|
1332 \begin{frame}<1-2>[c] |
|
1333 \frametitle{\begin{tabular}{c}Examples\end{tabular}} |
|
1334 \mbox{}\\[-6mm] |
|
1335 |
|
1336 \textcolor{blue}{ |
|
1337 \begin{center} |
|
1338 $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, a \rightarrow b)$ |
|
1339 $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, b \rightarrow a)$ |
|
1340 \end{center}} |
|
1341 |
|
1342 \textcolor{blue}{ |
|
1343 \begin{center} |
|
1344 $(\{a,b\}, (a \rightarrow b, a \rightarrow b))$\\ |
|
1345 \hspace{17mm}$\not\approx_\alpha (\{a, b\}, (a \rightarrow b, b \rightarrow a))$ |
|
1346 \end{center}} |
|
1347 |
|
1348 \onslide<2-> |
|
1349 {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$, |
|
1350 \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip |
|
1351 |
|
1352 2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$ |
|
1353 } |
|
1354 |
|
1355 \end{frame}} |
|
1356 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1357 *} |
|
1358 |
|
1359 |
|
1360 |
|
1361 (*<*) |
|
1362 end |
|
1363 (*>*) |
|