diff -r fb201e383f1b -r da575186d492 Slides/Slides9.thy --- a/Slides/Slides9.thy Tue Feb 19 05:38:46 2013 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1363 +0,0 @@ -(*<*) -theory Slides9 -imports "~~/src/HOL/Library/LaTeXsugar" "Nominal" -begin - -notation (latex output) - set ("_") and - Cons ("_::/_" [66,65] 65) - -(*>*) - - -text_raw {* - %% shallow, deep, and recursive binders - %% - %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010} - %%\renewcommand{\slidecaption}{Uppsala, 3.~March 2011} - \renewcommand{\slidecaption}{Leicester, 23.~November 2011} - \newcommand{\soutt}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt] - \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1>[t] - \frametitle{% - \begin{tabular}{@ {\hspace{-3mm}}c@ {}} - \\ - \LARGE General Binding Structures\\[-1mm] - \LARGE in Nominal Isabelle 2\\ - \end{tabular}} - \begin{center} - Christian Urban - \end{center} - \begin{center} - joint work with {\bf Cezary Kaliszyk}\\[0mm] - \end{center} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1> - \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}} - \mbox{}\\[-6mm] - - \begin{itemize} - \item the old Nominal Isabelle provided a reasoning infrastructure for single binders\medskip - - \begin{center} - Lam [a].(Var a) - \end{center}\bigskip - - \item<2-> but representing - - \begin{center} - $\forall\{a_1,\ldots,a_n\}.\; T$ - \end{center}\medskip - - with single binders and reasoning about it is a \alert{\bf major} pain; - take my word for it! - \end{itemize} - - \only<1>{ - \begin{textblock}{6}(1.5,11) - \small - for example\\ - \begin{tabular}{l@ {\hspace{2mm}}l} - & a $\fresh$ Lam [a]. t\\ - & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\ - & Barendregt-style reasoning about bound variables\\ - & (variable convention can lead to faulty reasoning) - \end{tabular} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[c] - \frametitle{} - - \begin{tabular}{c@ {\hspace{2mm}}c} - \\[6mm] - \begin{tabular}{c} - \includegraphics[scale=0.11]{harper.jpg}\\[-2mm] - {\footnotesize Bob Harper}\\[-2.5mm] - {\footnotesize (CMU)} - \end{tabular} - \begin{tabular}{c} - \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm] - {\footnotesize Frank Pfenning}\\[-2.5mm] - {\footnotesize (CMU)} - \end{tabular} & - - \begin{tabular}{p{6cm}} - \raggedright - \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005, - $\sim$31pp} - \end{tabular}\\ - - \pause - \\[0mm] - - \begin{tabular}{c} - \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] - {\footnotesize Andrew Appel}\\[-2.5mm] - {\footnotesize (Princeton)} - \end{tabular} & - - \begin{tabular}{p{6cm}} - \raggedright - \color{gray}{relied on their proof in a\\ {\bf security} critical application} - \end{tabular} - \end{tabular}\medskip\pause - - \small - \begin{minipage}{1.0\textwidth} - (I also found an {\bf error} in my Ph.D.-thesis about cut-elimination - examined by Henk Barendregt and Andy Pitts.) - \end{minipage} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[c] - \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}} - - \begin{itemize} - \item<1-> but representing - - \begin{center} - $\forall\{a_1,\ldots,a_n\}.\; T$ - \end{center}\medskip - - with single binders and reasoning about it was a \alert{\bf major} pain; - take my word for it! - \end{itemize} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-6> - \frametitle{New Types in HOL} - - \begin{center} - \begin{tikzpicture}[scale=1.5] - %%%\draw[step=2mm] (-4,-1) grid (4,1); - - \onslide<2-4,6>{\draw[very thick] (0.7,0.4) circle (4.25mm);} - \onslide<1-4,6>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);} - \onslide<3-5,6>{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);} - - \onslide<3-4,6>{\draw (-2.0, 0.845) -- (0.7,0.845);} - \onslide<3-4,6>{\draw (-2.0,-0.045) -- (0.7,-0.045);} - - \onslide<4-4,6>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}} - \onslide<4-5,6>{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}} - \onslide<1-4,6>{\draw (1.8, 0.48) node[right=-0.1mm] - {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<4-4,6>{\alert{(sets of raw terms)}}\end{tabular}};} - \onslide<2-4,6>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};} - \onslide<3-5,6>{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};} - - \onslide<3-4,6>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);} - \onslide<3-4,6>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};} - - \onslide<6>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);} - \end{tikzpicture} - \end{center} - - \begin{center} - \textcolor{red}{\large\bf\onslide<6>{define $\alpha$-equivalence}} - \end{center} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-4> - \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item binding sets of names has some interesting properties:\medskip - - \begin{center} - \begin{tabular}{l} - \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$} - \bigskip\smallskip\\ - - \onslide<2->{% - \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$} - }\bigskip\smallskip\\ - - \onslide<3->{% - \textcolor{blue}{$\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$} - }\medskip\\ - \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type} - \end{tabular} - \end{center} - \end{itemize} - - \begin{textblock}{8}(2,14.5) - \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct - \end{textblock} - - \only<4>{ - \begin{textblock}{6}(2.5,4) - \begin{tikzpicture} - \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\normalsize\color{darkgray} - \begin{minipage}{8cm}\raggedright - For type-schemes the order of bound names does not matter, and - $\alpha$-equivalence is preserved under \alert{vacuous} binders. - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-3> - \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item alpha-equivalence being preserved under vacuous binders is \underline{not} always - wanted:\bigskip\bigskip\normalsize - - \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l} - $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\ - \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}} - \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and} - \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$} - \end{tabular}} - - - \end{itemize} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1> - \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip - - \begin{center} - \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l} - $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\ - $\;\;\;\not\approx_\alpha - \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$ - \end{tabular}} - \end{center} - - - \end{itemize} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item the order does not matter and alpha-equivelence is preserved under - vacuous binders \textcolor{gray}{(restriction)}\medskip - - \item the order does not matter, but the cardinality of the binders - must be the same \textcolor{gray}{(abstraction)}\medskip - - \item the order does matter \textcolor{gray}{(iterated single binders)} - \end{itemize} - - \onslide<2->{ - \begin{center} - \isacommand{bind (set+)}\hspace{6mm} - \isacommand{bind (set)}\hspace{6mm} - \isacommand{bind} - \end{center}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-3> - \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}} - \mbox{}\\[-6mm] - - \mbox{}\hspace{10mm} - \begin{tabular}{ll} - \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ - \hspace{5mm}\phantom{$|$} Var name\\ - \hspace{5mm}$|$ App trm trm\\ - \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm - & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\ - \hspace{5mm}$|$ Let \only<2->{as::}assns \only<2->{t::}trm - & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\ - \multicolumn{2}{l}{\isacommand{and} assns $=$}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\ - \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\ - \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ []}}\\ - \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ [a] @ bn(as)}}\\ - \end{tabular} - - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2,4-8> - \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item lets first look at pairs\bigskip\medskip - - \textcolor{blue}{\begin{tabular}{@ {\hspace{1cm}}l} - $(as, x) \onslide<2->{\approx\!}\makebox[5mm][l]{\only<2-6>{${}_{\text{set}}$}% - \only<7>{${}_{\text{\alert{list}}}$}% - \only<8>{${}_{\text{\alert{set+}}}$}}% - \,\onslide<2->{(bs,y)}$ - \end{tabular}}\bigskip - \end{itemize} - - \only<1>{ - \begin{textblock}{8}(3,8.5) - \begin{tabular}{l@ {\hspace{2mm}}p{8cm}} - & \textcolor{blue}{$as$} is a set of names\ldots the binders\\ - & \textcolor{blue}{$x$} is the body (might be a tuple)\\ - & \textcolor{blue}{$\approx_{\text{set}}$} is where the cardinality - of the binders has to be the same\\ - \end{tabular} - \end{textblock}} - - \only<4->{ - \begin{textblock}{12}(5,8) - \textcolor{blue}{ - \begin{tabular}{ll@ {\hspace{1mm}}l} - $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm] - & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm] - & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$(\pi \act x) = y$}\\[1mm] - & \only<6-7>{$\;\;\;\wedge$}\only<8>{\textcolor{gray}{\xout{$\;\;\;\wedge$}}} & - \only<6-7>{$\pi \act as = bs$}\only<8>{\textcolor{gray}{\xout{$\pi \act as = bs$}}}\\ - \end{tabular}} - \end{textblock}} - - \only<7>{ - \begin{textblock}{7}(3,13.8) - \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of names - \end{textblock}} - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-3> - \frametitle{\begin{tabular}{c}Examples\end{tabular}} - \mbox{}\\[-3mm] - - \begin{itemize} - \item lets look at type-schemes:\medskip\medskip - - \begin{center} - \textcolor{blue}{$(as, x) \approx\!\makebox[5mm][l]{${}_{\text{set}}$} (bs, y)$} - \end{center}\medskip - - \onslide<2->{ - \begin{center} - \textcolor{blue}{ - \begin{tabular}{l} - $\text{fv}(x) = \{x\}$\\[1mm] - $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\ - \end{tabular}} - \end{center}} - \end{itemize} - - - \only<3->{ - \begin{textblock}{4}(0.3,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set+:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - \\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<3->{ - \begin{textblock}{4}(5.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<3->{ - \begin{textblock}{4}(10.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{list:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}Examples\end{tabular}} - \mbox{}\\[-3mm] - - \begin{center} - \textcolor{blue}{ - \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$} - \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$}} - \end{center} - - \begin{itemize} - \item \textcolor{blue}{$\approx_{\text{set+}}$, $\approx_{\text{set}}$% - \only<2>{, \alert{$\not\approx_{\text{list}}$}}} - \end{itemize} - - - \only<1->{ - \begin{textblock}{4}(0.3,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set+:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - \\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<1->{ - \begin{textblock}{4}(5.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<1->{ - \begin{textblock}{4}(10.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{list:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2> - \frametitle{\begin{tabular}{c}Examples\end{tabular}} - \mbox{}\\[-3mm] - - \begin{center} - \textcolor{blue}{\only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$}} - \end{center} - - \begin{itemize} - \item \textcolor{blue}{$\approx_{\text{set+}}$, $\not\approx_{\text{set}}$, - $\not\approx_{\text{list}}$} - \end{itemize} - - - \only<1->{ - \begin{textblock}{4}(0.3,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set+:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - \\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<1->{ - \begin{textblock}{4}(5.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{set:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - \only<1->{ - \begin{textblock}{4}(10.2,12) - \begin{tikzpicture} - \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\tiny\color{darkgray} - \begin{minipage}{3.4cm}\raggedright - \begin{tabular}{r@ {\hspace{1mm}}l} - \multicolumn{2}{@ {}l}{list:}\\ - $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\ - $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\ - $\wedge$ & $\pi \cdot x = y$\\ - $\wedge$ & $\pi \cdot as = bs$\\ - \end{tabular} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - - \only<2>{ - \begin{textblock}{6}(2.5,4) - \begin{tikzpicture} - \draw (0,0) node[inner sep=5mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] - {\normalsize - \begin{minipage}{8cm}\raggedright - \begin{itemize} - \item \color{darkgray}$\alpha$-equivalences coincide when a single name is - abstracted - \item \color{darkgray}in that case they are equivalent to ``old-fashioned'' definitions of $\alpha$ - \end{itemize} - \end{minipage}}; - \end{tikzpicture} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}} - \mbox{}\\[-6mm] - - \mbox{}\hspace{10mm} - \begin{tabular}{ll} - \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\ - \hspace{5mm}\phantom{$|$} Var name\\ - \hspace{5mm}$|$ App trm trm\\ - \hspace{5mm}$|$ Lam x::name t::trm - & \isacommand{bind} x \isacommand{in} t\\ - \hspace{5mm}$|$ Let as::assns t::trm - & \isacommand{bind} bn(as) \isacommand{in} t\\ - \multicolumn{2}{l}{\isacommand{and} assns $=$}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\ - \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\ - \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\ - \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\ - \end{tabular} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1->[t] - \frametitle{\begin{tabular}{c}Binder Clauses\end{tabular}} - - \begin{itemize} - \item We need to have a `clear scope' for a bound variable, and bound - variables should not be free and bound at the same time.\bigskip - \end{itemize} - - \begin{center} - \only<1>{ - \begin{tabular}{@ {\hspace{-5mm}}l} - \alert{\bf shallow binders}\\ - \hspace{4mm}Lam x::name t::trm\hspace{4mm} \isacommand{bind} x \isacommand{in} t\\ - \hspace{4mm}All xs::name set T::ty\hspace{4mm} \isacommand{bind} xs \isacommand{in} T\\ - \hspace{4mm}Foo x::name t$_1$::trm t$_2$::trm\hspace{4mm} - \isacommand{bind} x \isacommand{in} t$_1$, \isacommand{bind} x \isacommand{in} t$_2$\\ - \hspace{4mm}Bar x::name t$_1$::trm t$_2$::trm\hspace{4mm} - \isacommand{bind} x \isacommand{in} t$_1$ t$_2$\\ - \end{tabular}} - \only<2>{ - \begin{tabular}{@ {\hspace{-5mm}}l} - \alert{\bf deep binders} \\ - \hspace{4mm}Let as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t\\ - \hspace{4mm}Foo as::assns t$_1$::trm t$_2$::trm\\ - \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\[4mm] - \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Bar as::assns t$_1$::trm t$_2$::trm\\ - \hspace{20mm}\isacommand{bind} bn$_1$(as) \isacommand{in} t$_1$, \isacommand{bind} bn$_2$(as) \isacommand{in} t$_2$\\ - \end{tabular}} - \only<3>{ - \begin{tabular}{@ {\hspace{-5mm}}l} - {\bf deep \alert{recursive} binders} \\ - \hspace{4mm}Let\_rec as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t as\\[4mm] - - \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Foo\_rec as::assns t$_1$::trm t$_2$::trm\hspace{4mm}\\ - \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$ as, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\ - - \end{tabular}} - \end{center} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-5> - \frametitle{\begin{tabular}{c}Our Work\end{tabular}} - \mbox{}\\[-6mm] - - \begin{center} - \begin{tikzpicture}[scale=1.5] - %%%\draw[step=2mm] (-4,-1) grid (4,1); - - \onslide<1>{\draw[very thick] (0.7,0.4) circle (4.25mm);} - \onslide<1>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);} - \onslide<1->{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);} - - \onslide<1>{\draw (-2.0, 0.845) -- (0.7,0.845);} - \onslide<1>{\draw (-2.0,-0.045) -- (0.7,-0.045);} - - \onslide<1>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}} - \onslide<1->{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}} - \onslide<1>{\draw (1.8, 0.48) node[right=-0.1mm] - {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<1>{\alert{(sets of raw terms)}}\end{tabular}};} - \onslide<1>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};} - \onslide<1->{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};} - - \onslide<1>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);} - \onslide<1>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};} - - \onslide<1>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);} - \end{tikzpicture} - \end{center} - - \begin{textblock}{9.5}(6,3.5) - \begin{itemize} - \item<1-> defined fv and $\alpha$ - \item<2-> built quotient / new type - \item<3-> derived a reasoning infrastructure ($\fresh$, distinctness, injectivity, cases,\ldots) - \item<4-> derive a {\bf stronger} cases lemma - \item<5-> from this, a {\bf stronger} induction principle (Barendregt variable convention built in)\\ - \begin{center} - \textcolor{blue}{Foo ($\lambda x. \lambda y. t$) ($\lambda u. \lambda v. s$)} - \end{center} - \end{itemize} - \end{textblock} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}Part I: Conclusion\end{tabular}} - \mbox{}\\[-6mm] - - \begin{itemize} - \item the user does not see anything of the raw level\medskip - \only<1>{\begin{center} - Lam a (Var a) \alert{$=$} Lam b (Var b) - \end{center}\bigskip} - - \item<2-> \textcolor{blue}{http://isabelle.in.tum.de/nominal/} - \end{itemize} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-> - \frametitle{\begin{tabular}{c}Part II: $\alpha\beta$-Equal Terms\end{tabular}} - - \begin{itemize} - \item we have implemented a quotient package for Isabelle; - \item can now introduce the type of $\alpha\beta$-equal terms (starting - from $\alpha$-equal terms). - \item on paper this looks easy\pause\bigskip - \end{itemize} - - \begin{center} - \begin{tabular}{lll} - \smath{x \approx_{\alpha\beta} y} & \smath{\;\not\Rightarrow\;} & - \smath{\text{supp}(x) = \text{supp}(y)}\\ - & \smath{\;\not\Rightarrow\;} & - \smath{\text{size}(x) = \text{size}(y)}\\ - \end{tabular} - \end{center}\pause - - \small - \begin{center} - Andy: \smath{\;\;\text{supp}\mbox{\isasymlbrakk}x\mbox{\isasymrbrakk}_{\approx_{\alpha\beta}} = - {\text{\large$\bigcap$}} \{ \text{supp}(y) \;|\; y \approx_{\alpha\beta} x\}} - \end{center} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[c] - \frametitle{} - - \begin{center} - \begin{tabular}{rcl} - \smath{x\;[y := s]} & \smath{\dn} & \smath{\text{if}\;x=y\;\text{then}\;s\;\text{else}\;x}\bigskip\\ - \smath{t_1 t_2\;[y := s]} & \smath{\dn} & \smath{t_1[y := s]\;t_2[y := s]}\bigskip\\ - \smath{\lambda x.t\;[y := s]} & \smath{\dn} & \smath{\lambda x.\; t[y := s]}\\ - \multicolumn{3}{r}{provided \smath{x \fresh (y, s)}} - \end{tabular} - \end{center} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[t] - \frametitle{\begin{tabular}{c}Part III: Regular Languages\\[-8mm]\end{tabular}} - - \begin{center} - \huge\bf\textcolor{gray}{in Theorem Provers}\\ - \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} - \end{center} - - \begin{itemize} - \item automata @{text "\"} graphs, matrices, functions - \item<2-> combining automata/graphs - - \onslide<2->{ - \begin{center} - \begin{tabular}{ccc} - \begin{tikzpicture}[scale=1] - %\draw[step=2mm] (-1,-1) grid (1,1); - - \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); - \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); - - \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - - \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - - \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - - \draw (-0.6,0.0) node {\small$A_1$}; - \draw ( 0.6,0.0) node {\small$A_2$}; - \end{tikzpicture}} - - & - - \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}} - - & - - \onslide<3->{\begin{tikzpicture}[scale=1] - %\draw[step=2mm] (-1,-1) grid (1,1); - - \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3); - \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3); - - \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - - \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - - \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {}; - - \draw (C) to [red, very thick, bend left=45] (B); - \draw (D) to [red, very thick, bend right=45] (B); - - \draw (-0.6,0.0) node {\small$A_1$}; - \draw ( 0.6,0.0) node {\small$A_2$}; - \end{tikzpicture}} - - \end{tabular} - \end{center}\medskip - - \only<4-5>{ - \begin{tabular}{@ {\hspace{-5mm}}l@ {}} - disjoint union:\\[2mm] - \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}} - \end{tabular}} - \end{itemize} - - \only<5>{ - \begin{textblock}{13.9}(0.7,7.7) - \begin{block}{} - \medskip - \begin{minipage}{14cm}\raggedright - Problems with definition for regularity:\bigskip\\ - \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip - \end{minipage} - \end{block} - \end{textblock}} - \medskip - - \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\"}\; state nodes\medskip} - - \only<7->{You have to \alert{rename} states!} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[t] - \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}} - \mbox{}\\[-15mm]\mbox{} - - \begin{center} - \huge\bf\textcolor{gray}{in Theorem Provers}\\ - \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots} - \end{center} - - \begin{itemize} - \item Kozen's ``paper'' proof of Myhill-Nerode:\\ - \hspace{2cm}requires absence of \alert{inaccessible states} - \end{itemize}\bigskip\bigskip - - \begin{center} - \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A} - \end{center} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[t] - \frametitle{} - \mbox{}\\[25mm]\mbox{} - - \begin{textblock}{13.9}(0.7,1.2) - \begin{block}{} - \begin{minipage}{13.4cm}\raggedright - {\bf Definition:}\smallskip\\ - - A language \smath{A} is \alert{regular}, provided there exists a\\ - \alert{regular expression} that matches all strings of \smath{A}. - \end{minipage} - \end{block} - \end{textblock}\pause - - {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause - - Infrastructure for free. But do we lose anything?\medskip\pause - - \begin{minipage}{1.1\textwidth} - \begin{itemize} - \item pumping lemma\pause - \item closure under complementation\pause - \item \only<6>{regular expression matching}% - \only<7->{\soutt{regular expression matching} - {\footnotesize(@{text "\"}Brozowski'64, Owens et al '09)}} - \item<8-> most textbooks are about automata - \end{itemize} - \end{minipage} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[c] - \frametitle{\LARGE The Myhill-Nerode Theorem} - - \begin{itemize} - \item provides necessary and suf\!ficient conditions\\ for a language - being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip - - \item key is the equivalence relation:\medskip - \begin{center} - \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} - \end{center} - \end{itemize} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[c] - \frametitle{\LARGE The Myhill-Nerode Theorem} - - \begin{center} - \only<1>{% - \begin{tikzpicture}[scale=3] - \draw[very thick] (0.5,0.5) circle (.6cm); - \end{tikzpicture}}% - \only<2->{% - \begin{tikzpicture}[scale=3] - \draw[very thick] (0.5,0.5) circle (.6cm); - \clip[draw] (0.5,0.5) circle (.6cm); - \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); - \end{tikzpicture}} - \end{center} - - \begin{itemize} - \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} - \end{itemize} - - \begin{textblock}{5}(2.1,5.3) - \begin{tikzpicture} - \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm] - {$U\!N\!IV$}; - \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}}; - \end{tikzpicture} - \end{textblock} - - \only<2->{% - \begin{textblock}{5}(9.1,7.2) - \begin{tikzpicture} - \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm] - {@{text "\x\"}$_{\approx_{A}}$}; - \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}}; - \end{tikzpicture} - \end{textblock}} - - \only<3->{ - \begin{textblock}{11.9}(1.7,3) - \begin{block}{} - \begin{minipage}{11.4cm}\raggedright - Two directions:\medskip\\ - \begin{tabular}{@ {}ll} - 1.)\;finite $\Rightarrow$ regular\\ - \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm] - 2.)\;regular $\Rightarrow$ finite\\ - \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} - \end{tabular} - - \end{minipage} - \end{block} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - -*} - - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<-1>[c] - \frametitle{\begin{tabular}{@ {}l}\LARGE% - Transitions between Eq-Classes\end{tabular}} - - \begin{center} - \begin{tikzpicture}[scale=3] - \draw[very thick] (0.5,0.5) circle (.6cm); - \clip[draw] (0.5,0.5) circle (.6cm); - \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4); - \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8); - \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6); - \draw[white] (0.1,0.7) node (X) {$X$}; - \draw[white] (0.9,0.5) node (Y) {$Y$}; - \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y); - \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {}; - \end{tikzpicture} - \end{center} - - \begin{center} - \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y} - \end{center} - - \onslide<8>{ - \begin{tabular}{c} - \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick] - \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm] - \node[state,initial] (q_0) {$R_1$}; - \end{tikzpicture} - \end{tabular}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[c] - \frametitle{\LARGE The Other Direction} - - One has to prove - - \begin{center} - \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})} - \end{center} - - by induction on \smath{r}. Not trivial, but after a bit - of thinking, one can find a \alert{refined} relation:\bigskip - - - \begin{center} - \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c} - \begin{tikzpicture}[scale=1.1] - %Circle - \draw[thick] (0,0) circle (1.1); - \end{tikzpicture} - & - \begin{tikzpicture}[scale=1.1] - %Circle - \draw[thick] (0,0) circle (1.1); - %Main rays - \foreach \a in {0, 90,...,359} - \draw[very thick] (0, 0) -- (\a:1.1); - \foreach \a / \l in {45/1, 135/2, 225/3, 315/4} - \draw (\a: 0.65) node {\small$a_\l$}; - \end{tikzpicture} - & - \begin{tikzpicture}[scale=1.1] - %Circle - \draw[red, thick] (0,0) circle (1.1); - %Main rays - \foreach \a in {0, 45,...,359} - \draw[red, very thick] (0, 0) -- (\a:1.1); - \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2} - \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}}; - \end{tikzpicture}\\ - \small\smath{U\!N\!IV} & - \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} & - \small\smath{U\!N\!IV /\!/ \alert{R}} - \end{tabular}} - \end{center} - - \begin{textblock}{5}(9.8,2.6) - \begin{tikzpicture} - \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; - \end{tikzpicture} - \end{textblock} - - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[t] - \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}} - - \begin{itemize} - \item introduced by Brozowski~'64 - \item a regular expressions after a character has been parsed\\[-18mm]\mbox{} - \end{itemize} - - \only<1>{% - \textcolor{blue}{% - \begin{center} - \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}} - der c $\varnothing$ & $\dn$ & $\varnothing$\\ - der c [] & $\dn$ & $\varnothing$\\ - der c d & $\dn$ & if c $=$ d then [] else $\varnothing$\\ - der c ($r_1 + r_2$) & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\ - der c ($r^\star$) & $\dn$ & (der c $r$) $\cdot$ $r^\star$\\ - der c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\ - & & then (der c $r_1$) $\cdot$ $r_2$ $+$ (der c $r_2$)\\ - & & else (der c $r_1$) $\cdot$ $r_2$\\ - \end{tabular} - \end{center}}} - \only<2>{% - \textcolor{blue}{% - \begin{center} - \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}} - pder c $\varnothing$ & $\dn$ & \alert{$\{\}$}\\ - pder c [] & $\dn$ & \alert{$\{\}$}\\ - pder c d & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\ - pder c ($r_1 + r_2$) & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\ - pder c ($r^\star$) & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\ - pder c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\ - & & then (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$} (pder c $r_2$)\\ - & & else (pder c $r_1$) $\cdot$ $r_2$\\ - \end{tabular} - \end{center}}} - - \only<2>{ - \begin{textblock}{6}(8.5,4.7) - \begin{block}{} - \begin{quote} - \begin{minipage}{6cm}\raggedright - \begin{itemize} - \item partial derivatives - \item by Antimirov~'95 - \end{itemize} - \end{minipage} - \end{quote} - \end{block} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[t] - \frametitle{\LARGE Partial Derivatives} - - \mbox{}\\[0mm]\mbox{} - - \begin{itemize} - - \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}} - {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}} - refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause - \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause - \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed. - \end{itemize} - - \only<2->{% - \begin{textblock}{5}(3.9,7.2) - \begin{tikzpicture} - \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}}; - \draw (2.2,0) node {Antimirov '95}; - \end{tikzpicture} - \end{textblock}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[t] - \frametitle{\LARGE What Have We Achieved?} - - \begin{itemize} - \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}} - \medskip\pause - \item regular languages are closed under complementation; this is now easy - \begin{center} - \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}} - \end{center}\pause\medskip - - \item non-regularity (\smath{a^nb^n})\medskip\pause\pause - - \item take \alert{\bf any} language; build the language of substrings\\ - \pause - - then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star}) - - \end{itemize} - -\only<2>{ -\begin{textblock}{10}(4,14) -\small -\smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A} -\end{textblock}} - -\only<4>{ -\begin{textblock}{5}(2,8.6) -\begin{minipage}{8.8cm} -\begin{block}{} -\begin{minipage}{8.6cm} -If there exists a sufficiently large set \smath{B} (for example infinitely large), -such that - -\begin{center} -\smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. -\end{center} - -then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n}) -\end{minipage} -\end{block} -\end{minipage} -\end{textblock} -} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}[b] - \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you!\\[5mm]Questions?}} - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - - - -text_raw {* - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% - \mode{ - \begin{frame}<1-2>[c] - \frametitle{\begin{tabular}{c}Examples\end{tabular}} - \mbox{}\\[-6mm] - - \textcolor{blue}{ - \begin{center} - $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, a \rightarrow b)$ - $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, b \rightarrow a)$ - \end{center}} - - \textcolor{blue}{ - \begin{center} - $(\{a,b\}, (a \rightarrow b, a \rightarrow b))$\\ - \hspace{17mm}$\not\approx_\alpha (\{a, b\}, (a \rightarrow b, b \rightarrow a))$ - \end{center}} - - \onslide<2-> - {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$, - \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip - - 2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$ - } - - \end{frame}} - %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -*} - - - -(*<*) -end -(*>*) \ No newline at end of file