Nominal/Ex/Let.thy
branchNominal2-Isabelle2013
changeset 3208 da575186d492
parent 3197 25d11b449e92
equal deleted inserted replaced
3206:fb201e383f1b 3208:da575186d492
    39 thm trm_assn.fresh
    39 thm trm_assn.fresh
    40 thm trm_assn.exhaust
    40 thm trm_assn.exhaust
    41 thm trm_assn.strong_exhaust
    41 thm trm_assn.strong_exhaust
    42 thm trm_assn.perm_bn_simps
    42 thm trm_assn.perm_bn_simps
    43 
    43 
    44 lemma alpha_bn_inducts_raw[consumes 1]:
       
    45   "\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw;
       
    46  \<And>trm_raw trm_rawa assn_raw assn_rawa name namea.
       
    47     \<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa;
       
    48      P3 assn_raw assn_rawa\<rbrakk>
       
    49     \<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw)
       
    50         (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
       
    51   by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
       
    52 
       
    53 lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted]
       
    54 
       
    55 
       
    56 
       
    57 lemma alpha_bn_refl: "alpha_bn x x"
       
    58   by (induct x rule: trm_assn.inducts(2))
       
    59      (rule TrueI, auto simp add: trm_assn.eq_iff)
       
    60 lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x"
       
    61   sorry
       
    62 lemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z"
       
    63   sorry
       
    64 
       
    65 lemma bn_inj[rule_format]:
       
    66   assumes a: "alpha_bn x y"
       
    67   shows "bn x = bn y \<longrightarrow> x = y"
       
    68   by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs)
       
    69 
       
    70 lemma bn_inj2:
       
    71   assumes a: "alpha_bn x y"
       
    72   shows "\<And>q r. (q \<bullet> bn x) = (r \<bullet> bn y) \<Longrightarrow> permute_bn q x = permute_bn r y"
       
    73 using a
       
    74 apply(induct rule: alpha_bn_inducts)
       
    75 apply(simp add: trm_assn.perm_bn_simps)
       
    76 apply(simp add: trm_assn.perm_bn_simps)
       
    77 apply(simp add: trm_assn.bn_defs)
       
    78 done
       
    79 
       
    80 
       
    81 function
       
    82   apply_assn :: "(trm \<Rightarrow> nat) \<Rightarrow> assn \<Rightarrow> nat"
       
    83 where
       
    84   "apply_assn f ANil = (0 :: nat)"
       
    85 | "apply_assn f (ACons x t as) = max (f t) (apply_assn f as)"
       
    86 apply(case_tac x)
       
    87 apply(case_tac b rule: trm_assn.exhaust(2))
       
    88 apply(simp_all)
       
    89 apply(blast)
       
    90 done
       
    91 
       
    92 termination by lexicographic_order
       
    93 
       
    94 lemma [eqvt]:
       
    95   "p \<bullet> (apply_assn f a) = apply_assn (p \<bullet> f) (p \<bullet> a)"
       
    96   apply(induct f a rule: apply_assn.induct)
       
    97   apply simp
       
    98   apply(simp only: apply_assn.simps trm_assn.perm_simps)
       
    99   apply(perm_simp)
       
   100   apply(simp)
       
   101   done
       
   102 
       
   103 lemma alpha_bn_apply_assn:
       
   104   assumes "alpha_bn as bs"
       
   105   shows "apply_assn f as = apply_assn f bs"
       
   106   using assms
       
   107   apply (induct rule: alpha_bn_inducts)
       
   108   apply simp_all
       
   109   done
       
   110 
       
   111 nominal_primrec
       
   112     height_trm :: "trm \<Rightarrow> nat"
       
   113 where
       
   114   "height_trm (Var x) = 1"
       
   115 | "height_trm (App l r) = max (height_trm l) (height_trm r)"
       
   116 | "height_trm (Lam v b) = 1 + (height_trm b)"
       
   117 | "height_trm (Let as b) = max (apply_assn height_trm as) (height_trm b)"
       
   118   apply (simp only: eqvt_def height_trm_graph_aux_def)
       
   119   apply (rule, perm_simp, rule, rule TrueI)
       
   120   apply (case_tac x rule: trm_assn.exhaust(1))
       
   121   apply (auto)[4]
       
   122   apply (drule_tac x="assn" in meta_spec)
       
   123   apply (drule_tac x="trm" in meta_spec)
       
   124   apply (simp add: alpha_bn_refl)
       
   125   using [[simproc del: alpha_lst]]
       
   126   apply(simp_all)
       
   127   apply (erule_tac c="()" in Abs_lst1_fcb2)
       
   128   apply (simp_all add: pure_fresh fresh_star_def eqvt_at_def)[4]
       
   129   apply (erule conjE)
       
   130   apply (subst alpha_bn_apply_assn)
       
   131   apply assumption
       
   132   apply (rule arg_cong) back
       
   133   apply (erule_tac c="()" in Abs_lst_fcb2)
       
   134   apply (simp_all add: pure_fresh fresh_star_def)[3]
       
   135   apply (simp_all add: eqvt_at_def)[2]
       
   136   done
       
   137 
       
   138 definition "height_assn = apply_assn height_trm"
       
   139 
       
   140 function
       
   141   apply_assn2 :: "(trm \<Rightarrow> trm) \<Rightarrow> assn \<Rightarrow> assn"
       
   142 where
       
   143   "apply_assn2 f ANil = ANil"
       
   144 | "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)"
       
   145   apply(case_tac x)
       
   146   apply(case_tac b rule: trm_assn.exhaust(2))
       
   147   apply(simp_all)
       
   148   apply(blast)
       
   149   done
       
   150 
       
   151 termination by lexicographic_order
       
   152 
       
   153 lemma [eqvt]:
       
   154   "p \<bullet> (apply_assn2 f a) = apply_assn2 (p \<bullet> f) (p \<bullet> a)"
       
   155   apply(induct f a rule: apply_assn2.induct)
       
   156   apply simp_all
       
   157   done
       
   158 
       
   159 lemma bn_apply_assn2: "bn (apply_assn2 f as) = bn as"
       
   160   apply (induct as rule: trm_assn.inducts(2))
       
   161   apply (rule TrueI)
       
   162   apply (simp_all add: trm_assn.bn_defs)
       
   163   done
       
   164 
       
   165 nominal_primrec
       
   166     subst  :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"
       
   167 where
       
   168   "subst s t (Var x) = (if (s = x) then t else (Var x))"
       
   169 | "subst s t (App l r) = App (subst s t l) (subst s t r)"
       
   170 | "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)"
       
   171 | "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)"
       
   172   apply (simp only: eqvt_def subst_graph_aux_def)
       
   173   apply (rule, perm_simp, rule)
       
   174   apply (rule TrueI)
       
   175   apply (case_tac x)
       
   176   apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1))
       
   177   apply (auto simp add: fresh_star_def)[3]
       
   178   apply (drule_tac x="assn" in meta_spec)
       
   179   apply (simp add: Abs1_eq_iff alpha_bn_refl)
       
   180   apply simp_all[7]
       
   181   prefer 2
       
   182   apply(simp)
       
   183   using [[simproc del: alpha_lst]]
       
   184   apply(simp)
       
   185   apply(erule conjE)+
       
   186   apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2)
       
   187   apply (simp add: Abs_fresh_iff)
       
   188   apply (simp add: fresh_star_def)
       
   189   apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2]
       
   190   apply (simp add: bn_apply_assn2)
       
   191   apply(erule conjE)+
       
   192   apply(rule conjI)
       
   193   apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2)
       
   194   apply (simp add: fresh_star_def Abs_fresh_iff)
       
   195   apply assumption+
       
   196   apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)[2]
       
   197   apply (erule alpha_bn_inducts)
       
   198   apply simp_all
       
   199   done
       
   200 
       
   201 lemma lets_bla:
       
   202   "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Let (ACons x (Var y) ANil) (Var x)) \<noteq> (Let (ACons x (Var z) ANil) (Var x))"
       
   203   by (simp add: trm_assn.eq_iff)
       
   204 
       
   205 lemma lets_ok:
       
   206   "(Let (ACons x (Var y) ANil) (Var x)) = (Let (ACons y (Var y) ANil) (Var y))"
       
   207   apply (simp add: trm_assn.eq_iff Abs_eq_iff )
       
   208   apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
       
   209   apply (simp_all add: alphas atom_eqvt supp_at_base fresh_star_def trm_assn.bn_defs trm_assn.supp)
       
   210   done
       
   211 
       
   212 lemma lets_ok3:
       
   213   "x \<noteq> y \<Longrightarrow>
       
   214    (Let (ACons x (App (Var y) (Var x)) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq>
       
   215    (Let (ACons y (App (Var x) (Var y)) (ACons x (Var x) ANil)) (App (Var x) (Var y)))"
       
   216   apply (simp add: trm_assn.eq_iff)
       
   217   done
       
   218 
       
   219 lemma lets_not_ok1:
       
   220   "x \<noteq> y \<Longrightarrow>
       
   221    (Let (ACons x (Var x) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq>
       
   222    (Let (ACons y (Var x) (ACons x (Var y) ANil)) (App (Var x) (Var y)))"
       
   223   apply (simp add: alphas trm_assn.eq_iff trm_assn.supp fresh_star_def atom_eqvt Abs_eq_iff trm_assn.bn_defs)
       
   224   done
       
   225 
       
   226 lemma lets_nok:
       
   227   "x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
       
   228    (Let (ACons x (App (Var z) (Var z)) (ACons y (Var z) ANil)) (App (Var x) (Var y))) \<noteq>
       
   229    (Let (ACons y (Var z) (ACons x (App (Var z) (Var z)) ANil)) (App (Var x) (Var y)))"
       
   230   apply (simp add: alphas trm_assn.eq_iff fresh_star_def trm_assn.bn_defs Abs_eq_iff trm_assn.supp trm_assn.distinct)
       
   231   done
       
   232 
       
   233 lemma
       
   234   fixes a b c :: name
       
   235   assumes x: "a \<noteq> c" and y: "b \<noteq> c"
       
   236   shows "\<exists>p.([atom a], Var c) \<approx>lst (op =) supp p ([atom b], Var c)"
       
   237   apply (rule_tac x="(a \<leftrightarrow> b)" in exI)
       
   238   apply (simp add: alphas trm_assn.supp supp_at_base x y fresh_star_def atom_eqvt)
       
   239   by (metis Rep_name_inverse atom_name_def flip_fresh_fresh fresh_atom fresh_perm x y)
       
   240 
    44 
   241 end
    45 end