39 thm trm_assn.fresh |
39 thm trm_assn.fresh |
40 thm trm_assn.exhaust |
40 thm trm_assn.exhaust |
41 thm trm_assn.strong_exhaust |
41 thm trm_assn.strong_exhaust |
42 thm trm_assn.perm_bn_simps |
42 thm trm_assn.perm_bn_simps |
43 |
43 |
44 lemma alpha_bn_inducts_raw[consumes 1]: |
|
45 "\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw; |
|
46 \<And>trm_raw trm_rawa assn_raw assn_rawa name namea. |
|
47 \<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa; |
|
48 P3 assn_raw assn_rawa\<rbrakk> |
|
49 \<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw) |
|
50 (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b" |
|
51 by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto |
|
52 |
|
53 lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted] |
|
54 |
|
55 |
|
56 |
|
57 lemma alpha_bn_refl: "alpha_bn x x" |
|
58 by (induct x rule: trm_assn.inducts(2)) |
|
59 (rule TrueI, auto simp add: trm_assn.eq_iff) |
|
60 lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x" |
|
61 sorry |
|
62 lemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z" |
|
63 sorry |
|
64 |
|
65 lemma bn_inj[rule_format]: |
|
66 assumes a: "alpha_bn x y" |
|
67 shows "bn x = bn y \<longrightarrow> x = y" |
|
68 by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs) |
|
69 |
|
70 lemma bn_inj2: |
|
71 assumes a: "alpha_bn x y" |
|
72 shows "\<And>q r. (q \<bullet> bn x) = (r \<bullet> bn y) \<Longrightarrow> permute_bn q x = permute_bn r y" |
|
73 using a |
|
74 apply(induct rule: alpha_bn_inducts) |
|
75 apply(simp add: trm_assn.perm_bn_simps) |
|
76 apply(simp add: trm_assn.perm_bn_simps) |
|
77 apply(simp add: trm_assn.bn_defs) |
|
78 done |
|
79 |
|
80 |
|
81 function |
|
82 apply_assn :: "(trm \<Rightarrow> nat) \<Rightarrow> assn \<Rightarrow> nat" |
|
83 where |
|
84 "apply_assn f ANil = (0 :: nat)" |
|
85 | "apply_assn f (ACons x t as) = max (f t) (apply_assn f as)" |
|
86 apply(case_tac x) |
|
87 apply(case_tac b rule: trm_assn.exhaust(2)) |
|
88 apply(simp_all) |
|
89 apply(blast) |
|
90 done |
|
91 |
|
92 termination by lexicographic_order |
|
93 |
|
94 lemma [eqvt]: |
|
95 "p \<bullet> (apply_assn f a) = apply_assn (p \<bullet> f) (p \<bullet> a)" |
|
96 apply(induct f a rule: apply_assn.induct) |
|
97 apply simp |
|
98 apply(simp only: apply_assn.simps trm_assn.perm_simps) |
|
99 apply(perm_simp) |
|
100 apply(simp) |
|
101 done |
|
102 |
|
103 lemma alpha_bn_apply_assn: |
|
104 assumes "alpha_bn as bs" |
|
105 shows "apply_assn f as = apply_assn f bs" |
|
106 using assms |
|
107 apply (induct rule: alpha_bn_inducts) |
|
108 apply simp_all |
|
109 done |
|
110 |
|
111 nominal_primrec |
|
112 height_trm :: "trm \<Rightarrow> nat" |
|
113 where |
|
114 "height_trm (Var x) = 1" |
|
115 | "height_trm (App l r) = max (height_trm l) (height_trm r)" |
|
116 | "height_trm (Lam v b) = 1 + (height_trm b)" |
|
117 | "height_trm (Let as b) = max (apply_assn height_trm as) (height_trm b)" |
|
118 apply (simp only: eqvt_def height_trm_graph_aux_def) |
|
119 apply (rule, perm_simp, rule, rule TrueI) |
|
120 apply (case_tac x rule: trm_assn.exhaust(1)) |
|
121 apply (auto)[4] |
|
122 apply (drule_tac x="assn" in meta_spec) |
|
123 apply (drule_tac x="trm" in meta_spec) |
|
124 apply (simp add: alpha_bn_refl) |
|
125 using [[simproc del: alpha_lst]] |
|
126 apply(simp_all) |
|
127 apply (erule_tac c="()" in Abs_lst1_fcb2) |
|
128 apply (simp_all add: pure_fresh fresh_star_def eqvt_at_def)[4] |
|
129 apply (erule conjE) |
|
130 apply (subst alpha_bn_apply_assn) |
|
131 apply assumption |
|
132 apply (rule arg_cong) back |
|
133 apply (erule_tac c="()" in Abs_lst_fcb2) |
|
134 apply (simp_all add: pure_fresh fresh_star_def)[3] |
|
135 apply (simp_all add: eqvt_at_def)[2] |
|
136 done |
|
137 |
|
138 definition "height_assn = apply_assn height_trm" |
|
139 |
|
140 function |
|
141 apply_assn2 :: "(trm \<Rightarrow> trm) \<Rightarrow> assn \<Rightarrow> assn" |
|
142 where |
|
143 "apply_assn2 f ANil = ANil" |
|
144 | "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)" |
|
145 apply(case_tac x) |
|
146 apply(case_tac b rule: trm_assn.exhaust(2)) |
|
147 apply(simp_all) |
|
148 apply(blast) |
|
149 done |
|
150 |
|
151 termination by lexicographic_order |
|
152 |
|
153 lemma [eqvt]: |
|
154 "p \<bullet> (apply_assn2 f a) = apply_assn2 (p \<bullet> f) (p \<bullet> a)" |
|
155 apply(induct f a rule: apply_assn2.induct) |
|
156 apply simp_all |
|
157 done |
|
158 |
|
159 lemma bn_apply_assn2: "bn (apply_assn2 f as) = bn as" |
|
160 apply (induct as rule: trm_assn.inducts(2)) |
|
161 apply (rule TrueI) |
|
162 apply (simp_all add: trm_assn.bn_defs) |
|
163 done |
|
164 |
|
165 nominal_primrec |
|
166 subst :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm" |
|
167 where |
|
168 "subst s t (Var x) = (if (s = x) then t else (Var x))" |
|
169 | "subst s t (App l r) = App (subst s t l) (subst s t r)" |
|
170 | "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)" |
|
171 | "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)" |
|
172 apply (simp only: eqvt_def subst_graph_aux_def) |
|
173 apply (rule, perm_simp, rule) |
|
174 apply (rule TrueI) |
|
175 apply (case_tac x) |
|
176 apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1)) |
|
177 apply (auto simp add: fresh_star_def)[3] |
|
178 apply (drule_tac x="assn" in meta_spec) |
|
179 apply (simp add: Abs1_eq_iff alpha_bn_refl) |
|
180 apply simp_all[7] |
|
181 prefer 2 |
|
182 apply(simp) |
|
183 using [[simproc del: alpha_lst]] |
|
184 apply(simp) |
|
185 apply(erule conjE)+ |
|
186 apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2) |
|
187 apply (simp add: Abs_fresh_iff) |
|
188 apply (simp add: fresh_star_def) |
|
189 apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2] |
|
190 apply (simp add: bn_apply_assn2) |
|
191 apply(erule conjE)+ |
|
192 apply(rule conjI) |
|
193 apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2) |
|
194 apply (simp add: fresh_star_def Abs_fresh_iff) |
|
195 apply assumption+ |
|
196 apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)[2] |
|
197 apply (erule alpha_bn_inducts) |
|
198 apply simp_all |
|
199 done |
|
200 |
|
201 lemma lets_bla: |
|
202 "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Let (ACons x (Var y) ANil) (Var x)) \<noteq> (Let (ACons x (Var z) ANil) (Var x))" |
|
203 by (simp add: trm_assn.eq_iff) |
|
204 |
|
205 lemma lets_ok: |
|
206 "(Let (ACons x (Var y) ANil) (Var x)) = (Let (ACons y (Var y) ANil) (Var y))" |
|
207 apply (simp add: trm_assn.eq_iff Abs_eq_iff ) |
|
208 apply (rule_tac x="(x \<leftrightarrow> y)" in exI) |
|
209 apply (simp_all add: alphas atom_eqvt supp_at_base fresh_star_def trm_assn.bn_defs trm_assn.supp) |
|
210 done |
|
211 |
|
212 lemma lets_ok3: |
|
213 "x \<noteq> y \<Longrightarrow> |
|
214 (Let (ACons x (App (Var y) (Var x)) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq> |
|
215 (Let (ACons y (App (Var x) (Var y)) (ACons x (Var x) ANil)) (App (Var x) (Var y)))" |
|
216 apply (simp add: trm_assn.eq_iff) |
|
217 done |
|
218 |
|
219 lemma lets_not_ok1: |
|
220 "x \<noteq> y \<Longrightarrow> |
|
221 (Let (ACons x (Var x) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq> |
|
222 (Let (ACons y (Var x) (ACons x (Var y) ANil)) (App (Var x) (Var y)))" |
|
223 apply (simp add: alphas trm_assn.eq_iff trm_assn.supp fresh_star_def atom_eqvt Abs_eq_iff trm_assn.bn_defs) |
|
224 done |
|
225 |
|
226 lemma lets_nok: |
|
227 "x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow> |
|
228 (Let (ACons x (App (Var z) (Var z)) (ACons y (Var z) ANil)) (App (Var x) (Var y))) \<noteq> |
|
229 (Let (ACons y (Var z) (ACons x (App (Var z) (Var z)) ANil)) (App (Var x) (Var y)))" |
|
230 apply (simp add: alphas trm_assn.eq_iff fresh_star_def trm_assn.bn_defs Abs_eq_iff trm_assn.supp trm_assn.distinct) |
|
231 done |
|
232 |
|
233 lemma |
|
234 fixes a b c :: name |
|
235 assumes x: "a \<noteq> c" and y: "b \<noteq> c" |
|
236 shows "\<exists>p.([atom a], Var c) \<approx>lst (op =) supp p ([atom b], Var c)" |
|
237 apply (rule_tac x="(a \<leftrightarrow> b)" in exI) |
|
238 apply (simp add: alphas trm_assn.supp supp_at_base x y fresh_star_def atom_eqvt) |
|
239 by (metis Rep_name_inverse atom_name_def flip_fresh_fresh fresh_atom fresh_perm x y) |
|
240 |
44 |
241 end |
45 end |