diff -r fb201e383f1b -r da575186d492 Nominal/Ex/Let.thy --- a/Nominal/Ex/Let.thy Tue Feb 19 05:38:46 2013 +0000 +++ b/Nominal/Ex/Let.thy Tue Feb 19 06:58:14 2013 +0000 @@ -41,201 +41,5 @@ thm trm_assn.strong_exhaust thm trm_assn.perm_bn_simps -lemma alpha_bn_inducts_raw[consumes 1]: - "\alpha_bn_raw a b; P3 ANil_raw ANil_raw; - \trm_raw trm_rawa assn_raw assn_rawa name namea. - \alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa; - P3 assn_raw assn_rawa\ - \ P3 (ACons_raw name trm_raw assn_raw) - (ACons_raw namea trm_rawa assn_rawa)\ \ P3 a b" - by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\x y. True" _ "\x y. True", simplified]) auto - -lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted] - - - -lemma alpha_bn_refl: "alpha_bn x x" - by (induct x rule: trm_assn.inducts(2)) - (rule TrueI, auto simp add: trm_assn.eq_iff) -lemma alpha_bn_sym: "alpha_bn x y \ alpha_bn y x" - sorry -lemma alpha_bn_trans: "alpha_bn x y \ alpha_bn y z \ alpha_bn x z" - sorry - -lemma bn_inj[rule_format]: - assumes a: "alpha_bn x y" - shows "bn x = bn y \ x = y" - by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs) - -lemma bn_inj2: - assumes a: "alpha_bn x y" - shows "\q r. (q \ bn x) = (r \ bn y) \ permute_bn q x = permute_bn r y" -using a -apply(induct rule: alpha_bn_inducts) -apply(simp add: trm_assn.perm_bn_simps) -apply(simp add: trm_assn.perm_bn_simps) -apply(simp add: trm_assn.bn_defs) -done - - -function - apply_assn :: "(trm \ nat) \ assn \ nat" -where - "apply_assn f ANil = (0 :: nat)" -| "apply_assn f (ACons x t as) = max (f t) (apply_assn f as)" -apply(case_tac x) -apply(case_tac b rule: trm_assn.exhaust(2)) -apply(simp_all) -apply(blast) -done - -termination by lexicographic_order - -lemma [eqvt]: - "p \ (apply_assn f a) = apply_assn (p \ f) (p \ a)" - apply(induct f a rule: apply_assn.induct) - apply simp - apply(simp only: apply_assn.simps trm_assn.perm_simps) - apply(perm_simp) - apply(simp) - done - -lemma alpha_bn_apply_assn: - assumes "alpha_bn as bs" - shows "apply_assn f as = apply_assn f bs" - using assms - apply (induct rule: alpha_bn_inducts) - apply simp_all - done - -nominal_primrec - height_trm :: "trm \ nat" -where - "height_trm (Var x) = 1" -| "height_trm (App l r) = max (height_trm l) (height_trm r)" -| "height_trm (Lam v b) = 1 + (height_trm b)" -| "height_trm (Let as b) = max (apply_assn height_trm as) (height_trm b)" - apply (simp only: eqvt_def height_trm_graph_aux_def) - apply (rule, perm_simp, rule, rule TrueI) - apply (case_tac x rule: trm_assn.exhaust(1)) - apply (auto)[4] - apply (drule_tac x="assn" in meta_spec) - apply (drule_tac x="trm" in meta_spec) - apply (simp add: alpha_bn_refl) - using [[simproc del: alpha_lst]] - apply(simp_all) - apply (erule_tac c="()" in Abs_lst1_fcb2) - apply (simp_all add: pure_fresh fresh_star_def eqvt_at_def)[4] - apply (erule conjE) - apply (subst alpha_bn_apply_assn) - apply assumption - apply (rule arg_cong) back - apply (erule_tac c="()" in Abs_lst_fcb2) - apply (simp_all add: pure_fresh fresh_star_def)[3] - apply (simp_all add: eqvt_at_def)[2] - done - -definition "height_assn = apply_assn height_trm" - -function - apply_assn2 :: "(trm \ trm) \ assn \ assn" -where - "apply_assn2 f ANil = ANil" -| "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)" - apply(case_tac x) - apply(case_tac b rule: trm_assn.exhaust(2)) - apply(simp_all) - apply(blast) - done - -termination by lexicographic_order - -lemma [eqvt]: - "p \ (apply_assn2 f a) = apply_assn2 (p \ f) (p \ a)" - apply(induct f a rule: apply_assn2.induct) - apply simp_all - done - -lemma bn_apply_assn2: "bn (apply_assn2 f as) = bn as" - apply (induct as rule: trm_assn.inducts(2)) - apply (rule TrueI) - apply (simp_all add: trm_assn.bn_defs) - done - -nominal_primrec - subst :: "name \ trm \ trm \ trm" -where - "subst s t (Var x) = (if (s = x) then t else (Var x))" -| "subst s t (App l r) = App (subst s t l) (subst s t r)" -| "atom v \ (s, t) \ subst s t (Lam v b) = Lam v (subst s t b)" -| "set (bn as) \* (s, t) \ subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)" - apply (simp only: eqvt_def subst_graph_aux_def) - apply (rule, perm_simp, rule) - apply (rule TrueI) - apply (case_tac x) - apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1)) - apply (auto simp add: fresh_star_def)[3] - apply (drule_tac x="assn" in meta_spec) - apply (simp add: Abs1_eq_iff alpha_bn_refl) - apply simp_all[7] - prefer 2 - apply(simp) - using [[simproc del: alpha_lst]] - apply(simp) - apply(erule conjE)+ - apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2) - apply (simp add: Abs_fresh_iff) - apply (simp add: fresh_star_def) - apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2] - apply (simp add: bn_apply_assn2) - apply(erule conjE)+ - apply(rule conjI) - apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2) - apply (simp add: fresh_star_def Abs_fresh_iff) - apply assumption+ - apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)[2] - apply (erule alpha_bn_inducts) - apply simp_all - done - -lemma lets_bla: - "x \ z \ y \ z \ x \ y \(Let (ACons x (Var y) ANil) (Var x)) \ (Let (ACons x (Var z) ANil) (Var x))" - by (simp add: trm_assn.eq_iff) - -lemma lets_ok: - "(Let (ACons x (Var y) ANil) (Var x)) = (Let (ACons y (Var y) ANil) (Var y))" - apply (simp add: trm_assn.eq_iff Abs_eq_iff ) - apply (rule_tac x="(x \ y)" in exI) - apply (simp_all add: alphas atom_eqvt supp_at_base fresh_star_def trm_assn.bn_defs trm_assn.supp) - done - -lemma lets_ok3: - "x \ y \ - (Let (ACons x (App (Var y) (Var x)) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \ - (Let (ACons y (App (Var x) (Var y)) (ACons x (Var x) ANil)) (App (Var x) (Var y)))" - apply (simp add: trm_assn.eq_iff) - done - -lemma lets_not_ok1: - "x \ y \ - (Let (ACons x (Var x) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \ - (Let (ACons y (Var x) (ACons x (Var y) ANil)) (App (Var x) (Var y)))" - apply (simp add: alphas trm_assn.eq_iff trm_assn.supp fresh_star_def atom_eqvt Abs_eq_iff trm_assn.bn_defs) - done - -lemma lets_nok: - "x \ y \ x \ z \ z \ y \ - (Let (ACons x (App (Var z) (Var z)) (ACons y (Var z) ANil)) (App (Var x) (Var y))) \ - (Let (ACons y (Var z) (ACons x (App (Var z) (Var z)) ANil)) (App (Var x) (Var y)))" - apply (simp add: alphas trm_assn.eq_iff fresh_star_def trm_assn.bn_defs Abs_eq_iff trm_assn.supp trm_assn.distinct) - done - -lemma - fixes a b c :: name - assumes x: "a \ c" and y: "b \ c" - shows "\p.([atom a], Var c) \lst (op =) supp p ([atom b], Var c)" - apply (rule_tac x="(a \ b)" in exI) - apply (simp add: alphas trm_assn.supp supp_at_base x y fresh_star_def atom_eqvt) - by (metis Rep_name_inverse atom_name_def flip_fresh_fresh fresh_atom fresh_perm x y) end